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Preface to the 2nd Edition

This book is a ‘not-too-mathematical’ introduction to medical statistics. It should appeal to
anyone training or working in the health care arena — whatever their particular discipline —
who wants either a simple introduction to the subject, or a gentle reminder of stuff they might
have forgotten. I have aimed the book at:

e Students doing a first degree or diploma in clinical and health care courses.
¢ Students doing post-graduate clinical and health care studies.
® Health care professionals doing professional and membership examinations.

® Health care professionals who want to brush up on some medical statistics generally, or who
want a simple reminder of a particular topic.

¢ Anybody else who wants to know a bit of what medical statistics is about.

The most significant change in this second edition is the addition of two new chapters, one on
measuring survival, and one on systematic review and meta-analysis. The ability to understand
the principles of survival analysis is important, not least because of its popularity in clinical
research, and consequently in the clinical literature. Similarly, the increasing importance of
evidence-based clinical practice means that systematic review and meta-analysis also demand
aplace. In addition, I have taken the opportunity to correct and freshen the text in a few places,
as well as adding a small number of new examples. My thanks to Lucy Sayer, my editor at John
Wiley, for her enthusiastic support, to Liz Renwick and Robert Hambrook, and all the other
wiley people, for their invaluable help and special thanks to my copy-editor Barbara Noble, for
her truly excellent work and enthusiasm (of course, any remaining errors are mine).

I am happy to get any comments and criticisms from you. You can e-mail me at:
slothist@hotmail.com.






Preface to the 1st Edition

This book is intended to be an introduction to medical statistics but one which is not too
mathematical—in fact has the absolute minimum of maths. The exceptions however are Chap-
ters 17 and 18, on linear and logistic regression. It’s really impossible to provide material on
these procedures without some maths, and I hesitated about including them at all. However
they are such useful and widely used techniques, particularly logistic regression and its pro-
duction of odds ratios, that I felt they must go in. Of course you don’t have to read them. It
should appeal to anyone training or working in the health care arena—whatever their particular
discipline—who wants a simple, not-too-technical introduction to the subject. I have aimed
the book at:

e students doing either a first degree or diploma in health care-related courses
¢ students doing postgraduate health care studies
® health care professionals doing professional and membership examinations

® health care professionals who want to brush up on some medical statistics generally, or who
want a simple reminder of one particular topic

® anybody else who wants to know a bit of what medical statistics is about.

I intended originally to make this book an amalgam of two previous books of mine, Statistics
from Scratch for Health Care Professionals and Statistics Further from Scratch. However, although
it covers a lot of the same material as in those two books, this is in reality a completely new
book, with a lot of extra stuff, particularly on linear and logistic regression. I am happy to get
any comments and criticisms from you. You can e-mail me at: slothist@hotmail.com.






Introduction

Before the spread of personal computers, researchers had to do most things by hand (by which I
mean with a calculator), and so most statistics books were full of equations and their derivations,
with many pages of the necessary statistical tables. Analysing anything other than small samples
could be time-consuming and error prone. You also needed to be reasonably good at maths. Of
course, for the statistics specialist there is still a need for books that deal with statistical theory,
and the often complex mathematics which underlies the subject.

However, now that there are computers in most offices and homes, and many professionals
have some access to a computer statistics programme, there is room for books which focus
more on an understanding of the principal ideas which underlie the statistical procedures, on
knowing which approach is the most appropriate, and under what circumstances, and on the
interpretation of the outputs from a statistics program.

I have thus tried to keep the technical stuff to a minimum. There are a few equations here and
there (most in the last few chapters), but those I have provided are mainly for the purposes of
doing some of the exercises. I have also assumed that readers will have a nodding acquaintance of
either SPSS or Minitab. Short courses in these programs are now widely available to most clinical
staff. I also provide a few examples of outputs from SPSS and Minitab, for the commonest
applications, which I hope will help you make sense of any results you get. Both SPSS and
Minitab have excellent Help facilities, which should answer most of the difficulties you may
have.

Remember this is an introductory book. If you want to explore any of the methods I describe
in more detail, you can always turn to one of the more comprehensive medical statistics books,
such as Altman (1991), or Bland (1995).






Some Fundamental Stuff







First things first — the nature
of data

Learning objectives

When you have finished this chapter, you should be able to:

e Explain the difference between nominal, ordinal, and metric discrete and metric con-
tinuous variables.

e Identify the type of a variable.

e Explain the non-numeric nature of ordinal data.

Variables and data

A variable is something whose value can vary. For example, age, sex and blood type are
variables. Data are the values you get when you measure! a variable. For example, 32 years
(for the variable age), or female (for the variable sex). I have illustrated the idea in Table 1.1.

'Tam using ‘measure’ in the broadest sense here. We wouldn’t measure the sex or the ethnicity of someone, for
example. We would instead usually observe it or ask the person or get the value from a questionnaire. But we
would measure their height or their blood pressure. More on this shortly.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd



4 CH 1 FIRST THINGS FIRST — THE NATURE OF DATA

Table 1.1 Variables and data

The variables ...

... and the data.

Mrs Brown Mr Patel Ms Manda
/_7&
Age 32 24 20
Sex ) Female Male Female )
Blood type O O A

The good, the bad, and the ugly - types of variable

There are two major types of variable — categorical variables and metric® variables. Each of these
can be further divided into two sub-types, as shown in Figure 1.1, which also summarises their
main characteristics.

Categorical variables

Metric variables

Nominal Ordinal Discrete Continuous
Values in Values in Integer values Continuous values
arbitrary ordered on proper numeric ~ on proper numeric
categories categories line or scale line or scale
(no units) (no units) (counted units) (measured units)

Figure 1.1 Types of variable

Categorical variables
Nominal categorical variables

Consider the variable blood type. Let’s assume for simplicity that there are only four different
blood types: O, A, B, and A/B. Suppose we have a group of 100 patients. We can first determine
the blood type of each and then allocate the result to one of the four blood type categories. We
might end up with a table like Table 1.2.

2You will also see metric data referred to as interval/ratio data. The computer package SPSS uses the term ‘scale’
data.
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Table 1.2 Blood types of 100 patients (fictitious data)

Number of patients

Blood type (or frequency)
o) 65
A 15
B 12
A/B 8

By the way, a table like Table 1.2 is called a frequency table, or a contingency table. It shows how
the number, or frequency, of the different blood types is distributed across the four categories.
So 65 patients have a blood type O, 15 blood type A, and so on. We'll look at frequency tables
in more detail in the next chapter.

The variable ‘blood type’ is a nominal categorical variable. Notice two things about this
variable, which is typical of all nominal variables:

e The data do not have any units of measurement.’

® The ordering of the categories is completely arbitrary. In other words, the categories cannot
be ordered in any meaningful way.

In other words we could just as easily write the blood type categories as A/B, B, O, Aor B, O, A,
A/B, or B, A, A/B, O, or whatever. We can’t say that being in any particular category is better,
or shorter, or quicker, or longer, than being in any other category.

Exercise 1.1 Suggest a few other nominal variables.

Ordinal categorical variables

Let’s now consider another variable some of you may be familiar with — the Glasgow Coma Scale,
or GCS for short. As the name suggests, this scale measures the degree of brain injury following
head trauma. A patient’s Glasgow Coma Scale score is judged by their responsiveness, as observed
by a clinician, in three areas: eye opening response, verbal response and motor response. The
GCS score can vary from 3 (death or severe injury) to 15 (mild or no injury). In other words,
there are 13 possible values or categories of brain injury.

Imagine that we determine the Glasgow Coma Scale scores of the last 90 patients admitted
to an Emergency Department with head trauma, and we allocate the score of each patient to
one of the 13 categories. The results might look like the frequency table shown in Table 1.3.

3 For example, cm, or seconds, or ccs, or kg, etc.
*We are excluding trivial arrangements such as alphabetic.
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Table 1.3 A frequency table showing
the (hypothetical) distribution of 90
Glasgow Coma Scale scores

Glasgow Coma Number of
Scale score patients
3 8
4 1
5 6
6 5
7 5
8 7
9 6
10 8
11 8
12 10
13 12

— =
U
[S23Ne)

The Glasgow Coma Scale is an ordinal categorical variable. Notice two things about this
variable, which is typical of all ordinal variables:

® The data do not have any units of measurement (so the same as for nominal variables).

® The ordering of the categories is not arbitrary as it was with nominal variables. It is now
possible to order the categories in a meaningful way.

In other words, we can say that a patient in the category ‘15 has less brain injury than a patient
in category ‘14’ Similarly, a patient in the category ‘14’ has less brain injury than a patient in
category ‘13’ and so on.

However, there is one additional and very important feature of these scores, (or any other set
of ordinal scores). Namely, the difference between any pair of adjacent scores is not necessarily
the same as the difference between any other pair of adjacent scores.

For example, the difference in the degree of brain injury between Glasgow Coma Scale scores
of 5 and 6, and scores of 6 and 7, is not necessarily the same. Nor can we say that a patient with
a score of say 6 has exactly twice the degree of brain injury as a patient with a score of 12. The
direct consequence of this is that ordinal data therefore are not real numbers. They cannot be
placed on the number line.> The reason is, of course, that the Glasgow Coma Scale data, and

> The number line can be visualised as a horizontal line stretching from minus infinity on the left to plus infinity
on the right. Any real number, whether negative or positive, decimal or integer (whole number), can be placed
somewhere on this line.
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the data of most other clinical scales, are not properly measured but assessed in some way, by the
clinician working with the patient.® This is a characteristic of all ordinal data.

Because ordinal data are not real numbers, it is not appropriate to apply any of the rules of
basic arithmetic to this sort of data. You should not add, subtract, multiply or divide ordinal
values. This limitation has marked implications for the sorts of analyses we can do with such
data — as you will see later in this book.

Exercise 1.2 Suggest a few more scales with which you may be familiar from your clinical
work.

Exercise 1.3 Explain why it wouldn’t really make sense to calculate an average Glasgow
Coma Scale for a group of head injury patients.

Metric variables
Continuous metric variables

Look at Table 1.4, which shows the weight in kg (rounded to two decimal places) of six
individuals.

© There are some scales that may involve some degree of proper measurement, but these will still produce ordinal
values if even one part of the score is determined by a non-measured element.
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Table 1.4 The weight of six patients

Patient Weight (kg)
Ms V. Wood 68.25
Mr P. Green 80.63
Ms S. Lakin 75.00
Mrs B. Noble 71.21
Ms G. Taylor 73.44
Ms J. Taylor 76.98

The variable ‘weight’ is a metric continuous variable. With metric variables, proper measure-
ment is possible. For example, if we want to know someone’s weight, we can use a weighing
machine, we don’t have to look at the patient and make a guess (which would be approximate),
or ask them how heavy they are (very unreliable). Similarly, if we want to know their diastolic
blood pressure we can use a sphygmometer.” Guessing, or asking, is not necessary.

Because they can be properly measured, these variables produce data that are real numbers,
and so can be placed on the number line. Some common examples of metric continuous
variables include: birthweight (g), blood pressure (mmHg), blood cholesterol (tg/ml), waiting
time (minutes), body mass index (kg/m?), peak expiry flow (I per min), and so on. Notice that
all of these variables have units of measurement attached to them. This is a characteristic of all
metric continuous variables.

In contrast to ordinal values, the difference between any pair of adjacent values is exactly the
same. The difference between birthweights of 4000 g and 4001 g is the same as the difference
between 4001 g and 4002 g, and so on. This property of real numbers is known as the interval
property (and as we have seen, it’s not a property possessed by ordinal values). Moreover, a blood
cholesterol score, for example, of 8.4 j1g/ml is exactly twice a blood cholesterol of 4.2 pg/ml.
This property is known as the ratio property (again not shared by ordinal values).® In summary:

® Metric continuous variables can be properly measured and have units of measurement.

® They produce data that are real numbers (located on the number line).

These properties are in marked contrast to the characteristics of nominal and ordinal variables.

Because metric data values are real numbers, you can apply all of the usual mathematical
operations to them. This opens up a much wider range of analytical possibilities than is possible
with either nominal or ordinal data — as you will see.

Exercise 1.4 Suggest a few continuous metric variables with which you are familiar.
What is the difference between, and consequences of, assessing the value of something
and measuring it?

7 We call the device we use to obtain the measured value, e.g. a weighing scale, or a sphygmometer, or tape
measure, etc., a measuring instrument.
81t is for these two reasons that metric data is also known as ‘interval/ratio’ data — but ‘metric’ data is shorter!
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Table 1.5 The number of times that a group
of children with asthma used their inhalers in
the past 24 hours

Number of times inhaler
Patient used in past 24 hours

Tim
Jane
Susie
Barbara
Peter
Gill

X NN NN~

Discrete metric variables

Consider the data in Table 1.5. This shows the number of times in the past 24 hours that each
of six children with asthma used their inhalers.

Continuous metric data usually comes from measuring. Discrete metric data, such as that in
Table 1.5, usually comes from counting. For example, number of deaths, number of pressure
sores, number of angina attacks, and so on, are all discrete metric variables. The data pro-
duced are real numbers, and are invariably integer (i.e. whole number). They can be placed
on the number line, and have the same interval and ratio properties as continuous metric
data:

® Metric discrete variables can be properly counted and have units of measurement — ‘numbers
of things’

® They produce data which are real numbers located on the number line.

Exercise 1.5 Suggest a few discrete metric variables with which you are familiar.

Exercise 1.6 What is the difference between a continuous and a discrete metric variable?
Somebody shows you a six-pack egg carton. List (a) the possible number of eggs that the
carton could contain; (b) the number of possible values for the weight of the empty carton.
What do you conclude?

How can I tell what type of variable I am dealing with?

The easiest way to tell whether data is metric is to check whether it has units attached to it, such
as: g, mm, °C, ug/cms, number of pressure sores, number of deaths, and so on. If not, it may be
ordinal or nominal — the former if the values can be put in any meaningful order. Figure 1.2 is
an aid to variable type recognition.
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Has the variable got units? (this
includes 'numbers of things')

No /\ YeS

Can the data be put in Do the data come from
meaningful order? measuring or counting?
No /\Yes Counting /\Measuring
Categorical Categorical Discrete Continuous
nominal ordinal metric metric

Figure 1.2 An algorithm to help identify variable type

Exercise 1.7 Four migraine patients are asked to assess the severity of their migraine
pain one hour after the first symptoms of an attack, by marking a point on a horizontal
line, 100 mm long. The line is marked ‘No pain), at the left-hand end, and ‘Worst possible
pain’ at the right-hand end. The distance of each patient’s mark from the left-hand end
is subsequently measured with a mm rule, and their scores are 25 mm, 44 mm, 68 mm
and 85 mm. What sort of data is this? Can you calculate the average pain of these four
patients? Note that this form of measurement (using a line and getting subjects to mark
it) is known as a visual analogue scale (VAS).

Exercise 1.8 Table 1.6 contains the characteristics of cases and controls from a case-
control study” into stressful life events and breast cancer in women (Protheroe et al.1999).
Identify the type of each variable in the table.

Exercise 1.9 Table 1.7 is from a cross-section study to determine the incidence of
pregnancy-related venous thromboembolic events and their relationship to selected risk
factors, such as maternal age, parity, smoking, and so on (Lindqvist e al. 1999). Identify
the type of each variable in the table.

Exercise 1.10 Table 1.8 is from a study to compare two lotions, Malathion and
d-phenothrin, in the treatment of head lice (Chosidow et al. 1994). In 193 schoolchil-
dren, 95 children were given Malathion and 98 d-phenothrin. Identify the type of each
variable in the table.

Atthe end of each chapter you should look again at the learning objectives and satisfy yourself
that you have achieved them.

“Don’t worry about the different types of study, I will discuss them in detail in Chapter 6.
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Table 1.6 Characteristics of cases and controls from a case-control study into stressful life
events and breast cancer in women. Values are mean (SD) unless stated otherwise. Reproduced
from BMJ, 319, 1027-30, courtesy of BMJ Publishing Group

Breast cancer

Control group

Variable group (n = 106) (n=226) P value
Age 61.6 (10.9) 51.0 (8.5) 0.000*
Social class® (%):

I 10 (10) 20 (9)

I 38 (36) 82 (36)

111 non-manual 28 (26) 72 (32) 0.094*

IIT manual 13 (12) 24 (11)

v 11 (10) 21(9)

v 3(3) 2(1)

VI 3(3) 4(2)
No of children (%):

0 15 (14) 31 (14)

1 16 (15) 31(13.7) 0.97

2 42 (40) 84 (37)

>3 32 (31)" 80 (35)
Age at birth of first child 21.3 (5.6) 20.5 (4.3) 0.500*
Age at menarche 12.8 (1.4) 13.0 (1.6) 0.200*
Menopausal state (%):

Premenopausal 14 (13) 66 (29)

Perimenopausal 9(9) 43 (19) 0.000°

Postmenopausal 83 (78) 117 (52)
Age at menopause 47.7 (4.5) 45.6 (5.2) 0.001*
Lifetime use of oral contraceptives (%) 38 61 0.000*
No of years taking oral contraceptives 3.0 (5.4) 4.2 (5.0) 0.065°
No of months breastfeeding (n=90) (n=195)

7.4 (9.9) 7.4 (12.1) 0.990*

Lifetime use of hormone replacement therapy (%) 29 (27) 78 (35) 0.193%
Mean years of hormone replacement therapy 1.6 (3.7) 1.9 (4.0) 0.460*
Family history of ovarian cancer (%) 8 (8) 10 (4) 0.241%
History of benign breast disease (%) 15 (15) 105 (47) 0.000°
Family history of breast cancer¥ (%) 16 (15) 35 (16) 0.9978
Units of alcohol/week (%):

0 38 (36) 59 (26)

0-4 26 (25) 71 (31) 0.927*

5.9 20 (19) 52 (23)

>10 22 (21) 44 (20)
No of cigarettes/day:

0 83 (78.3) 170 (75.2)

1-9 8 (7.6) 14 (6.2) 0.383*

>10 15 (14.2) 42 (18.6)
Body mass index (kg/m?) 26.8 (5.5) 24.8 (4.2) 0.001*

*Two sample t test.
TData for one case missing.
%2 test for trend.

§ X2 test.
YNo data for one control.
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Table 1.7 Patient characteristics from a cross-section study of thrombotic risk during
pregnancy. Reproduced with permission from Elsevier (Obstetrics and Gynaecology, 1999, Vol. 94,
pages 595-599.

Thrombosis cases Controls
(n = 608) (n = 114,940) OR 95% CI
Maternal age (y) (classification 1)
<19 26 (4.3) 2817 (2.5) 1.9 1.3,2.9
20-24 125 (20.6) 23,006 (20.0) 1.1 0.9,1.4
25-29 216 (35.5) 44,763 (38.9) 1.0 Reference
30-34 151 (24.8) 30,135 (26.2) 1.0 0.8,1.3
>35 90 (14.8) 14,219 (12.4) 1.3 1.0, 1.7
Maternal age (y) (classification 2)
<19 26 (4.3) 2817 (2.5) 1.8 1.2,2.7
20-34 492 (80.9) 97,904 (85.2) 1.0 Reference
>35 90 (14.8) 14,219 (12.4) 1.3 1.0, 1.6
Parity
Para 0 304 (50.0) 47,425 (41.3) 1.8 1.5,2.2
Para 1 142 (23.4) 40,734 (35.4) 1.0 Reference
Para 2 93 (15.3) 18,113 (15.8) 1.5 1.1, 1.9
>Para 3 69 (11.3) 8429 (7.3) 2.4 1.8,3.1
Missing data 0(0) 239 (0.2)
No. of cigarettes daily
0 423 (69.6) 87,408 (76.0) 1.0 Reference
1-9 80 (13.2) 14,295 (12.4) 1.2 0.9, 1.5
>10 57 (9.4) 8177 (7.1) 1.4 1.1, 1.9
Missing data 48 (7.9) 5060 (4.4)
Multiple pregnancy
No 593 (97.5) 113,330 (98.6) 1.0 Reference
Yes 15 (2.5) 1610 (1.4) 1.8 1.1,3.0
Preeclampsia
No 562 (92.4) 111,788 (97.3) 1.0 Reference
Yes 46 (7.6) 3152 (2.7) 2.9 2.1,3.9
Cesarean delivery
No 420 (69.1) 102,181 (88.9) 1.0 Reference
Yes 188 (30.9) 12,759 (11.1) 3.6 3.0,4.3

OR = odds ratio; CI = confidence interval.
Data presented as 1 (%).
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Table 1.8 Basic characteristics of two groups of children in a study to compare two lotions in
the treatment of head lice. One group (95 children) were given Malathion lotion, the second
group (98 children), d-phenothrin. Reprinted courtesy of Elsevier (The Lancet, 1994, 344,
1724-26)

Characteristic Malathion (n = 95) d-phenothrin (n = 98)
Age at randomisation (yr) 8.6 (1.6) 8.9 (1.6)
Sex—no of children (%)

Male 31(33) 41 (42)
Female 64 (67) 57 (58)
Home no (mean)

Number of rooms 3.3(1.2) 3.3(1.8)
Length of hair—no of children (%)*

Long 37 (39) 20 (21)
Mid-long 23 (24) 33 (34)
Short 35 (37) 44 (46)
Colour of hair—no of children (%)

Blond 15 (16) 18 (18)
Brown 49 (52) 55 (56)
Red 4(4) 4(4)
Dark 27 (28) 21 (22)
Texture of hair—no of children (%)

Straight 67 (71) 69 (70)
Curly 19 (20) 25 (26)
Frizzy/kinky 9(9) 4(4)
Pruritus—no of children (%) 54 (57) 65 (66)
Excoriations—no of children (%) 25 (26) 39 (40)

Evaluation of infestation
Live lice-no of children (%)

0 18 (19) 24 (24)
+ 45 (47) 35 (36)
++ 9(9) 15 (15)
4+ 12 (13) 15 (15)
4+ 11 (12) 9(9)
Viable nits-no of children (%)*
0 19 (20) 8 (8)
+ 32 (34) 41 (45)
++ 22 (23) 24 (25)
+++ 18 (19) 20 (21)
++++ 4(4) 4(4)

The 2 groups were similar at baseline except for a significant difference for the length of hair (p = 0.02; chi-square).
*One value missing in the d-phenothrin group.

Baseline characteristics of the P Humanus capitis-infested schoolchildren assigned to receive malathion or d-
phenothrin lotion*
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Describing data with tables

Learning objectives

When you have finished this chapter you should be able to:
e Explain what a frequency distribution is.

e Construct a frequency table from raw data.

Construct relative frequency, cumulative frequency and relative cumulative
frequency tables.

e Construct grouped frequency tables.

Construct a cross-tabulation table.

Explain what a contingency table is.

Rank data.

What is descriptive statistics?

The next four chapters of the book are about the processes of descriptive statistics. What does
this mean? When we first collect data for some project, it will usually be in a ‘raw’ form. That
is, not organised in any way, making it difficult to see what’s going on. Descriptive statistics is
a series of procedures designed to illuminate the data, so that its principal characteristics and

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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main features are revealed. This may mean sorting the data by size; perhaps putting it into a
table, maybe presenting it in an appropriate chart, or summarising it numerically; and so on.

An important consideration in this process is the type of variable concerned. The data from
some variables are best described with a table, some with a chart, some, perhaps, with both.
With other variables, a numeric summary is more appropriate. In this chapter, I am going to
focus on putting the data into an appropriate table. In subsequent chapters, I will look at the
use of charts and of numeric summaries.

The frequency table

We'll begin with another look the frequency table, which you first encountered in the previous
chapter. Let’s start with an example using nominal data.

Nominal variables - organising the data into non-ordered categories

In Table 1.8 we had data from the nit lotion study comparing two types of treatment for nits,
Malathion or d-phenothrin, using a sample of 95 children, and for each child information
was collected on nine variables (Chosidow et al. 1994). The raw data thus consisted of 95
questionnaires, each containing data on the nine variables, one being the child’s hair colour
blonde, brown, red and dark.

The resulting frequency table for the four colour categories is shown in Table 2.1. As you
know, the ordering of nominal categories is arbitrary, and in this example they are shown by
the number of children in each — largest first. Notice that total frequency (n = 95), is shown at
the top of the frequency column. This is helpful to any reader and is good practice. Table 2.1 tells
us how the hair colour of each of the 95 children is distributed across the four colour categories.
In other words, Table 2.1 describes the frequency distribution of the variable ‘hair colour’.
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Table 2.1 Frequency table showing the distribution of
hair colour of each of 95 children in a study of
Malathion versus d-phenothrin for the treatment of nits

Category Frequency (number of children)
(hair colour) n=95

Brown 49

Dark 27

Blonde 15

Red 4

Relative frequency

Often of more use than the actual number of subjects in each category are the percentages. Tables
with this information are called relative or percentage frequency tables. The third column of
Table 2.2 shows the percentage of children in each hair-colour category.

Table 2.2 Relative frequency table, showing the percentage of children in
each hair-colour category

(49/95) x 100 =
51.6

Category Frequency Relativg freql_Jency
(hair colour) (nur_nber of (% of children in each
children) category)
n=95
Brown 49 51.6
Dark 27 28.4
Blonde 15 15.8
Red 4 4.2

Exercise 2.1 Table 2.3 shows the frequency distribution for cause of blunt injury to
limbs in 75 patients (Rainer et al. 2000). Calculate a column of relative frequencies. What
percentage of patients had crush injuries?

Table 2.3 Frequency table showing causes of blunt
injury to limbs in 75 patients. Reproduced from BMJ,
321, 1247-51, courtesy of BMJ Publishing Group

Frequency (number of patients)

Cause of injury n=75
Falls 46
Crush 20
Motor vehicle crash 6
Other 3
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Table 2.4 The frequency distributions for the ordinal
variable ‘level of satisfaction’, with nursing care by 475
psychiatric in-patients. Reproduced from Brit J Nursing, 3,
16-17, courtesy of MA Healthcare Limited

Satisfaction with Frequency (number of patients)
nursing care n =475

Very satisfied 121

Satisfied 161

Neutral 90

Dissatisfied 51

Very dissatisfied 52

Ordinal variables - organising the data into ordered categories

When the variable in question is ordinal, we can allocate the data into ordered categories. As an
example, Table 2.4 shows the frequency distribution for the variable, level of satisfaction, with
their psychiatric nursing care, by 475 psychiatric in-patients (Rodgers and Pilgim 1991). The
variable has five categories as shown.

‘Level of satisfaction’ is clearly an ordinal variable. ‘Satisfaction’ cannot be properly mea-
sured, and has no units. But the categories can be meaningfully ordered, as they have been
here. The frequency values indicate that more than half of the patients were happy with their
psychiatric nursing care, 282 patients (121 + 161), out of 475. Much smaller numbers expressed
dissatisfaction.

Exercise 2.2 Calculate the relative frequencies for the frequency data in Table 2.4. What
percentage of patients were ‘very dissatisfied” with their care?

Continuous metric variables - organising the data by value

Organising raw metric continuous data into a frequency table is usually impractical, because
there are such a large number of possible values. Indeed, there may well be no value that occurs
more than once. This means that the corresponding frequency table is likely to have a large, and
thus unhelpful, number of rows. Not of much help in uncovering any pattern in the data. The
most useful approach with metric continuous data is to group them first, and then construct a
frequency distribution of the grouped data. Let’s see how this works.

Grouping metric continuous data

As an illustration, consider the data in the first two columns of Table 2.5, which shows the
birthweight (g) of 30 infants. Birthweight is a metric continuous variable, although it is shown
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Table 2.5 Raw data showing a number of characteristics associated with 30 infants, including
birthweight (g)

Infant I/D Birthweight Apgar Mother smoked Mother’s
(n=30) (g) score? Sex during pregnancy parity
1 3710 8 M no 1
2 3650 7 F no 1
3 4490 8 M no 0
4 3421 6 F yes 1
5 3399 6 F no 2
6 4094 9 M no 3
7 4006 8 M no 0
8 3287 5 F yes 5
9 3594 7 F no 2
10 4206 9 M no 4
11 3508 7 F no 0
12 4010 8 M no 2
13 3896 8 M no 0
14 3800 8 F no 0
15 2860 4 M no 6
16 3798 8 F no 2
17 3666 7 F no 0
18 4200 9 M yes 2
19 3615 7 M no 1
20 3193 4 F yes 1
21 2994 5 F yes 1
22 3266 5 M yes 1
23 3400 6 F no 0
24 4090 8 M no 3
25 3303 6 F yes 0
26 3447 6 M yes 1
27 3388 6 F yes 1
28 3613 7 M no 1
29 3541 7 M no 1
30 3886 8 M yes 1

“The Apgar Scale is a measure of the well-being of new-born infants. It can vary between 0 and 10 (low scores bad).

here to the nearest integer value, greater precision not being necessary. Among the 30 infants
there are none with the same birthweight, and a frequency table with 30 rows and a frequency
of 1 in every row would add very little to what you already know from the raw data (apart from
telling you what the minimum and maximum birthweights are). One solution is to group the
data into (if possible) groups of equal width, to produce a grouped frequency distribution. This
is only be worthwhile, however, if you have enough data values, the 30 here is barely enough,
but in practice there will, hopefully, be more.

The resulting grouped frequency table for birthweight is shown in Table 2.6. This gives us a
much better idea of the data’s main features than did the raw data. For example, you can now
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Table 2.6 Grouped frequency distribution for
birthweight of 30 infants (data in Table 2.5)

No of infants (frequency)
Birthweight (g) n =30

2700-2999
3000-3299
3300-3599
3600-3899
3900-4199
4200-4499

W = O O W N

see that most of the infants had a birthweight around the middle of the range of values, about
3600g, with progressively fewer values above and below this.

Exercise 2.3 The data in Table 2.7 is from a study to ascertain the extent of variation in
the case-mix of adult admissions to intensive care units (ICUs) in Britain and Ireland, and
its impact on outcomes (Rowan 1993). The table records the percentage mortality in 26
intensive care units. Construct a grouped frequency table of percentage mortality. What
do you observe?

Table 2.7 Percentage mortality in 26 intensive care units. Reproduced from BMJ, 1992, 307,
972-981, by permission of BMJ Publishing Group

ICU 1 2 3 4 5 6 7 8 9 10 11 12 13
% mortality 152 313 149 163 193 182 202 12.8 147 294 21.1 204 136

ICU 14 15 16 17 18 19 20 21 22 23 24 25 26
% mortality 22.4 14.0 143 228 26.7 189 137 177 272 193 16.1 135 11.2

Open-ended groups

One problem arises when one or two values are a long way from the general mass of the
data, either much lower or much higher. These values are called outliers. Their presence can
mean having lots of empty or near-empty rows at one or both ends of the frequency table. For
example, one infant with a birthweight of 6050 g would mean having five empty cells before
this value appears. One favoured solution is to use open-ended groups. If you define a new last
group as > 5000 g, you can record a frequency of 1 in this row,! and thus incorporate all of the
intervening empty groups into one. As an example, the grouped age distribution at the top of
Table 1.7 on p. 12 uses open-ended groups at both ends, i.e. < 19y, and > 35y.

!> means greater than or equal to; < means less than or equal to.
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Table 2.8 Frequency table for discrete metric data
showing number of times that inhaler used in past
24 hours by 53 children with asthma

Number of times inhaler ~ Frequency (number of children)
used in past 24 hours n=>53

bR W= O
—_—
[*)NS) e -l \S o)W e)Y

v

Frequency tables with discrete metric variables

Constructing frequency tables for metric discrete data is often less of a problem than with
continuous metric data, because the number of possible values which the variable can take
is often limited (although, if necessary, the data can be grouped in just the same way). As an
example, Table 2.8 is a frequency table showing the number of times in the past 24 hours that
53 asthmatic children used their inhaler. We can easily see that most used their inhaler once
or twice. Notice the open-ended row showing that six children had used their inhaler five or
more times.

Exercise 2.4 The data below are the parity (the number of previous live births) of 40
women chosen atrandom from the 332 women in the stress and breast cancer study referred
to in Table 1.6. (a) Construct frequency and relative frequency tables for this parity data.
(b) Describe briefly what is revealed about the principal features of parity in these women.
4 0 2 3 2 2 3 3 0 3 1 2 8 4 2 1 2 2 2 2 2 3 2
23 0 3 2 401 3 5 110 2 1

Cumulative frequency

The data in Table 2.9 shows the frequency distribution of Glasgow Coma Scale score (GCS) for
the last 154 patients admitted to an emergency department with head injury following a road
traffic accident (RTA).

Suppose you are asked, ‘How many patients had a GCS score of 7 or less?. You could answer
this question by looking at Table 2.9 and adding up all of the values in the first five rows. But,
if questions like this are likely to come up frequently, it may pay to calculate the cumulative
frequencies. To do this we successively add, or cumulate, the frequency values one by one, starting
at the top of the column. The results are shown in the third column of Table 2.10.



24 CH 2 DESCRIBING DATA WITH TABLES

Table 2.9 The Glasgow Coma Scale scores of 154 road
traffic accident patients

Frequency (number of patients)

GCS score n =154
3 10
4 5
5 6
6 2
7 12
8 15
9 18

10 14
11 15

12 21

13 13
14 17

15 6

The cumulative frequency for each category tells us how many subjects there are in that
category, and in all the lesser-valued categories in the table. For example, 35 of the total of 154
patients had a GCS score of 7 or less.

A cumulative frequency table provides us with a somewhat different view of the data. More-
over it allows us to draw a useful chart, as you will see in Chapter 3. Note that although you
can legitimately calculate cumulative frequencies for both metric and ordinal data, it makes no
sense to do so for nominal data, because of the arbitrary category order.

Exercise 2.5 (a) Add relative and cumulative relative frequency columns to Table 2.10.
(b) What percentage of subjects had a GCS score of 10 or less?

Table 2.10 The Glasgow Coma Scale scores of Table 2.9 showing the cumulative frequency
values

Frequency Cumulative frequency
GCS score (number of (cumulative number of
patients) patients)

3 10 10

4 5 15 @ )

5 6 ] — Cumulat|v<=T
frequency is found

6 2 23 ; .

7 12 35 by adding successive
frequencies, i.e.

8 15 50 10

+5=15

9 18 68 B
15+ 6 =21,

10 14 82 andsoon, ...

11 15 97 ’

12 21 118

13 13 131

14 17 148

15 6 154
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Cross-tabulation

Each of the frequency tables above provides us with a description of the frequency distribution
of a single variable. Sometimes, however, you will want to examine the association between
two variables, within a single group of individuals. You can do this by putting the data into
a table of cross-tabulations, where the rows represent the categories of one variable, and the
columns represent the categories of a second variable. These tables can provide some insights
into sub-group structures.’

Toillustrate the idea, let’s return to the 30 infants whose data is recorded in Table 2.5. Suppose
you are particularly interested in a possible association between infants whose Apgar score is
less than 7 (since this is an indicator for potential problems in the infant’s well-being), and
whether during pregnancy the mother smoked or not. Notice that we have only one group
here, the 30 infants, but two sub-groups, those with an Apgar score of less than 7, and those
with a score of 7 or more.

We have two nominal variables each with two categories, and we will thus need a cross-tab
table with two rows and two columns, giving us four cells in total. We then need to go through
the raw data in Table 2.5 and count the number of infants to be allocated to each cell. The final
result is shown in Table 2.11.°

Obviously Table 2.11 is much more informative than the raw data in Table 2.5. You can see
immediately that 11 out of 30 babies had Apgar scores <7, and of these 11 babies, the number
with mothers who smoked (8) is almost nearly three times as large as those with non-smoking

2 A ‘sub-group’ is a smaller identifiable group within the overall group, such as male infants and female infants,
among all infants.

3We tend to refer to cross-tabulation tables like Table 2.12 as contingency tables rather than frequency tables
(although they are the same thing). A contingency table represents the frequency values for one group of
individuals, but separated into sub-groups, as here for the smoking and non-smoking mothers.
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Table 2.11 A cross-tabulation of the variables ‘Mother
smoked during pregnancy? (Y/N) and ‘Apgar score <7?
(Y/N)', for 30 newborn infants (see Table 2.5)

Apgar <7
Yes No
Mother smoked? Yes 8 2
No 3 17

Table 2.12 The same cross-tabulation as Table 2.11,
but with values expressed as percentages of the column

totals
Apgar < 7 (%)
Yes No
Mother smoked? Yes 72.7 10.5
No 27.3 89.5

mothers (3). More helpful would be a cross-tabulation with percentage values, like that in
Table 2.12, which shows the data in Table 2.11 expressed as percentages of the column totals.*

You can see that 72.7 per cent of infants with low Apgar scores had mothers who had smoked,
compared to only 27.3 per cent with mothers who hadn’t. These results might provoke you
into thinking that maybe there’s a link of some sort between these two variables. Note that
when appropriate you can also express the cross-tabulation with values as percentages of the
row totals.

Exercise2.6 The diagnosis (breast lump benign = 0; breast lump malignant = 1), for the
same 40 women (in the same order), as in Exercise 2.4, is shown below. (a) Cross-tabulate
diagnosis against parity (with categories, ‘two or fewer children), and ‘more than two
children’). (b) Repeat expressing the values as percentages. (c) Does the cross-tabulation
suggest any possible association between diagnosis and parity?

0o o00O0O0O100O0O001 11001 O0O01O0O0O0O0
00 01 0 O0O0OO0OO0ODT1TO0TO0O0UO0OTO0OTO0

Exercise 2.7 Using data from Table 1.6, the life stress and breast cancer study, construct
a suitable 2-by-2 table, in percentage terms, with the columns being cases (breast cancer),
and controls (no breast cancer), and the rows lifetime use of oral contraceptives, OCP (yes
or no). Comment on any patterns you can see in the table. Is this a contingency table?
Explain your answer.

4 Note that tables with percentage values are not contingency tables.
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Ranking data

As you will see later in the book, some statistical techniques require the data to be ranked,
before any analysis takes place. Ranking means first arranging the data by size, and then giving
the largest value a rank of 1, the second largest value a rank of 2, and so on.> Any values which
are the same, i.e. which are tied, are given the average rank. For example, the seven values: 2,
3,5,5,5,6,8, could be ranked as: 1,2,4 =,4 =, 4 =, 6, 7, because the three 5 values have
the original ranks of 3, 4, 5, the average of which is 4. SPSS and Minitab will both rank data for
you if necessary.

> Or you could give the smallest a rank of 1, the next smallest a rank of 2, and so on.
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Describing data with charts

Learning objectives

When you have finished this chapter you should be able to:

Choose the most appropriate chart for a given data type.

Draw pie charts; and simple, clustered and stacked, bar charts.

Draw histograms.

Draw step charts and ogives.

Draw time series charts.

Interpret and explain what a chart reveals.

Picture it!

In terms of describing data, of seeing ‘what’s going on’, an appropriate chart is almost always a
good idea. What ‘appropriate’ means depends primarily on the type of data, as well as on what
particular features of it you want to explore. In addition, if you are writing a report, a chart will
always give you an ‘impact’ factor. Finally, a chart can often be used to illustrate or explain a
complex situation for which a form of words or a table might be clumsy, lengthy or otherwise

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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Children receiving Malathion - % by hair colour

Category
Blond

Brown

B Red
Dark

Figure 3.1 Pie chart: children receiving Malathion in nit lotion study, percentage by hair colour. Data
in Table 2.1

inadequate. In this chapter I am going to examine some of the commonest charts available for
describing data, and indicate which charts are appropriate for each type of data.

Charting nominal and ordinal data
The pie chart

You will all know what a pie chart is, so just a few comments here. Each segment (slice) of a pie
chart should be proportional to the frequency of the category it represents. For example, Figure
3.1 is a pie chart of hair colour for the children receiving Malathion in the nit lotion study
in Table 2.1. I have chosen to display the percentage values, which are often more helpful. A
disadvantage of a pie chart is that it can only represent one variable (in Figure 3.1, hair colour).
You will therefore need a separate pie chart for each variable you want to chart. Moreover a pie
chart can lose clarity if it is used to represent more than four or five categories.

Exercise 3.1 The two pie charts in Figure 3.2 are from a study to investigate the types of
stroke in patients with asymptotic internal-carotid-artery stenosis (Inzitari et al. 2000).
They show the types (in percentages) of disabling and non-disabling ipsilateral strokes,
among two categories of patients: those with < 60 per cent stenosis, and those with 60-99
per cent stenosis. What is the most common type of stroke in each of the two categories
of stenosis? What is the second most common type?

Exercise 3.2 Sketch a pie chart for the patient satisfaction data in Table 2.4.
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<60% Stenosis 60—99% Stenosis

25.5%

O Disabling cardioembolic M Disabling lacunar i3 Disabling large-artery
[ Nondisabling cardioembolic [ Nondisabling lacunar N Nondisabling large-artery

Figure 3.2 Pie charts showing the types (by percentages) of disabling and non-disabling ipsilateral
strokes, among two categories of patients, those with < 60 per cent stenosis, and those with 60-
99 per cent stenosis. Reproduced from NEJM, 342, 1693-9, by permission of New England Journal of
Medicine

The simple bar chart

An alternative to the pie chart for nominal data is the bar chart. This is a chart with frequency
on the vertical axis and category on the horizontal axis. The simple bar chart is appropriate if
only one variable is to be shown. Figure 3.3 is a simple bar chart of hair colour for the group of
children receiving Malathion in the nit lotion study. Note that the bars should all be the same
width, and there should be (equal) spaces between bars. These spaces emphasise the categorical
nature of the data.

60
O Brown
50 4 Dark
Blond
B Red
40 -

Frequency
N W
o o
1 I

—
o
1

0

Figure 3.3 Simple bar chart of hair colour of children receiving Malathion in nit lotion study (data in
Table 2.1)
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Why?

Exercise 3.3 Use the data in Table 1.8 to sketch a simple bar chart, showing the hair
colour of the children receiving d-phenothrin.

Exercise 3.4 Draw a simple bar chart for the patient satisfaction data in Table 2.4. In
Exercise 3.2, you drew a pie chart for this data. Which chart do you think works best?

The clustered bar chart

If you have more than one group you can use the clustered bar chart. Suppose you also know
the sex of the children receiving Malathion in the above example. This gives us two sub-groups,

boys and girls, with the data shown in Table 3.1.

There are two ways of presenting a clustered bar chart. Figure 3.4 shows one possibility,
with hair colour categories on the horizontal axis. This arrangement is helpful if you want
to compare the relative sizes of the groups within each category (e.g. redheaded boys versus

redheaded girls).

Frequency

Figure 3.4 Clustered bar chart of hair colour by sex for children in Table 3.1

= = N N W W
o O o O o1 O O

Table 3.1 Frequency distribution of
hair colour by sex of Malathion children
in nit lotion study

Frequency
Hair colour Boys Girls
Blonde 4 11
Brown 29 20
Red 1 3
Dark 14 13

i K Boys
W Girls
: . FVV.
Blonde Brown Red Dark




CHARTING NOMINAL AND ORDINAL DATA 33

Alternatively, the chart could have been drawn with the categories boys and girls, on the
horizontal axis. This format would be more useful if you wanted to compare category sizes
within each group. For example, red haired girls compared to dark haired girls. Which chart is
more appropriate depends on what aspect of the data you want to examine.

Exercise 3.5 Use the data in Table 3.1 to sketch a clustered percentage bar chart showing
the hair colour of children receiving Malathion and d-phenothrin. There are two possible
formats. Explain why you chose the one you did.

An example from practice

The clustered bar chart in Figure 3.5 is from a study describing the development of the APACHE
II scale, used to assess risk of death, and used mainly in ICUs (Knaus et al. 1985). APACHE II
has a range of 0 (least risk of death) to 71 (greatest risk). Data was available on two groups of
patients, one group admitted to ICU for medical emergencies, the second admitted directly to
ICU following surgery. The bar chart shows the percentage death rate (vertical axis), against

APACHE Il AND HOSPITAL DEATH
Noroperative and Postoperative Patients

70.0% - y
%

20.0% - % %

0.0% rrzra . % % /J /j

04 5-9 10-14 15-19 2024 25-29 30-34 35+
Apache Il Score
Il Nonoperative 777} Postoperative

Figure 3.5 Clustered bar chart of APACHE II scores. Data on two groups of patients, one group admitted
to ICU for medical emergencies, the second admitted directly to ICU following surgery. The vertical axis
is death rate (per cent). Reproduced from Critical Care Medicine, 13, 818-29, courtesy of Lippincott
Williams Wilkins
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bands of the APACHE II score. Quite clearly, for those less severely ill, percentage mortality
among the medical emergency group is noticeably higher than among the post-operative group.
For those patients classified as the most severely ill (scores of 35+), the situation is reversed.

60

50 A

40 J B Dark
§ Red
3 30 A
s Brown
L 20 4 O Blonde

10 1

0

Boys I Girls

Figure 3.6 A stacked bar chart of hair colour by sex

The stacked bar chart

Figure 3.6 shows a stacked bar chart for the same hair colour and sex data shown in Table 3.1.
Instead of appearing side by side, as in the clustered bar chart of Figure 3.5, the bars are now
stacked on top of each other.! Stacked bar charts are appropriate if you want to compare the
totalnumber of subjects in each group (total number of boys and girls for example), but not so
good if you want to compare category sizes between groups, e.g. redheaded girls with redheaded
boys.

Exercise3.6 Drawastacked bar chart showing the same data as in Figure 3.6, but grouped
by hair colour (i.e. hair colour on the horizontal axis).

Charting discrete metric data

We can use bar charts to graph discrete metric data in the same way as with ordinal data.?

! We could, alternatively, have used four columns for the four colour categories, with two groups per column
(boys and girls). As with the clustered bar chart, the most appropriate arrangement depends on what aspects
of the data you want to compare.

2In theory we should represent the discrete metric values with vertical lines and not bars, since they are ‘point’
values, but most common computer statistics packages don’t offer this facility.
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Number of schools (n=37)
25

20

15

el

123 4567 89 1011121314151617 1819202122 23
Number of cases per school

Figure 3.7 Bar chart used to represent discrete metric data on numbers of measles cases in 37 schools.
Reproduced from Amer. J. Epid., 146, 881-2, courtesy of OUP

An example from practice

Figure 3.7 is an example of a bar chart used to present numbers of measles cases (discrete metric
data), in 37 schools in Kentucky in a school year (Prevots et al. 1997).

Exercise 3.7 What does Figure 3.7 tell you about the distribution of measles cases in
these 37 schools?

Charting continuous metric data
The histogram

A continuous metric variable can take a very large number of values, so it is usually impractical
to plot them without first grouping the values. The grouped data is plotted using a frequency
histogram, which has frequency plotted on the vertical axis and group size on the horizontal axis.

A histogram looks like a bar chart but without any gaps between adjacent bars. This em-
phasises the continuous nature of the underlying variable. If the groups in the frequency table
are all of the same width, then the bars in the histogram will also all be of the same width.?
Figure 3.8 shows a histogram of the grouped birthweight data in Table 2.6.

One limitation of the histogram is that it can represent only one variable at a time (like the
pie chart), and this can make comparisons between two histograms difficult, because, if you
try to plot more than one histogram on the same axes, invariably parts of one chart will overlap
the other.

3 But if one group is twice as wide as the others then the frequency must be halved, etc.
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Figure 3.8 Histogram of the grouped birthweight data in Table 2.6

Exercise 3.8 The histogram in Figure 3.9 is from the British Regional Heart Study
and shows the serum potassium levels (mmol/l) of 7262 men aged 40-59 not receiving
treatment for hypertension (Wannamethee et al. 1997). Comment on what the histogram
reveals about serum potassium levels in this sample of 7262 British men.

Exercise 3.9 The grouped age data in Table 3.2 is from a study to identify predictive
factors for suicide, and shows the age distribution by sex of 974 subjects who attempted
suicide unsuccessfully, and those among them who were later successful (Nordentoft et al.
1993). Sketch separate histograms of percentage age for the male attempters and for the
later succeeders. Comment on what the charts show.
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Serum potassium (mmol/l)

Figure 3.9 Histogram of the serum potassium levels of 7262 British men aged 40-59 years. Reproduced
from Amer. J. Epid., 145, 598-607, courtesy of OUP
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Table 3.2 Grouped age data from a follow-up cohort study to identify predictive factors for
suicide. Reproduced from BMJ, 1993, 306, 1637-1641, by permission of BMJ Publishing Group

No (%) attempting suicide No (%) later successful
Men (n = 412) Women (n = 562) Men (n=48) Women (n = 55)

Age (years)

15-24 57 (13.8) 80 (14.2) 3 (6.3) 3 (5.5)

25-34 131 (31.8) 132 (23.5) 10 (20.8) 12 (21.8)

35-44 103 (25.0) 146 (26.0) 16 (33.3) 16 (29.1)

45-54 62 (15.0) 90 (16.0) 11 (22.9) 9 (16.4)

55-64 38 (9.2) 58 (10.3) 4 (8.3) 4 (7.3)

65-74 18 (4.4) 43 (7.7) 3 (6.3) 8 (14.5)

75-84 1 (0.2) 11 (2.0) 0 2 (3.6)

>85 2 (0.5) 2 (0.4) 1(2.1) 1 (1.8)
Living alone 96 (23.3) 85 (15.1) 17 (35.4) 14 (25.5)
Employed 139 (33.7) 185 (32.9) 14 (29.2) 13 (23.6)

Charting cumulative data

The step chart

You can chart cumulative ordinal data or cumulative discrete metric data (data for both types
of variables are integers) with a step chart. In a step chart the total height of each step above the
horizontal axis represents the cumulative frequency, up to and including that category or value.
The height of each individual step is the frequency of the corresponding category or value.

An example from practice

Figure 3.10 is a step chart of the cumulative rate of suicide (number per 1000 of the population),
in 152 Swedish municipalities, taken from a study into the use of calcium channel blockers

—_
o

Suicide rate per 1000 population

Follow up (years)

Figure 3.10 A step chart of the cumulative rate of suicide (number per 1000 of the population) in
152 Swedish municipalities. 617 users (continuous line) and 2780 non-users (dotted line). Reproduced
from BMJ, 316, 741-5, courtesy of BMJ Publishing Group
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(prescribed for hypertension) and the risk of suicide (Lindberg ef al. 1998). So for example, in
year 4 the suicide rate per 1000 of the population was (7 — 5.2) = 1.8 (the approximate height
of the step). And over the course of the first four years, the suicide rate had risen to seven per
thousand. You can produce step charts for numeric ordinal data, such as cumulative Apgar
scores in exactly the same way, although not, as far as I am aware, with Word or Excel, or with
SPSS or Minitab.

Table 3.3 Cumulative and relative cumulative frequency for the grouped birthweight from the
data in Table 2.6

Birthweight No of infants Cumulative % cumulative
(g) (frequency) frequency frequency
2700-2999 2 2 6.67
3000-3299 3 5 16.67
3300-3599 9 14 46.67
3600-3899 9 23 76.67
3900-4199 4 27 90.00
4200-4499 3 30 100.00

Exercise 3.10 Draw a step chart for the percentage cumulative Apgar scores in Table 3.3.

The cumulative frequency curve or ogive

With continuous metric data, there is assumed to be a smooth continuum of values, so you
can chart cumulative frequency with a correspondingly smooth curve, known as a cumulative
frequency curve, or ogive.* If you add columns for cumulative and relative cumulative frequency
to the grouped birthweight data in Table 2.6, you get Table 3.3.

If you want to draw an ogive by hand, you plot, for each group or class, the group cumulative
frequency value against the lower limit of the next higher group. So, for example, 16.67 is plotted
against 3300, 46.67 against 3600, and so on. The points should be joined with a smooth curve.?
The result is shown in Figure 3.11. Notice that I have put a percentage cumulative frequency of
zero in the imaginary group 2400-2699 g. This enables me to close the ogive at the left-hand
end.

The ogive can be very useful if you want to estimate the cumulative frequency for any value
on the horizontal axis, which is not one of the original group values. For example, suppose
you want to know what percentage of infants had a birthweight of 3650g or less. By drawing
a line vertically upwards from a value of 3750 g on the horizontal axis to the ogive, and then
horizontally to the vertical axis, you can see that about 63 per cent of the infants weighed 3750 g
or less. You can of course ask such questions in reverse, for example, what birthweight marks
the lowest 50 per cent of birthweights? This time you would start with a value of 50 per cent

*The ‘g’ in ogive is pronounced as the j in jive’
> Unfortunately, I couldn’t find a program that would allow me to join the points with a smooth curve.
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Figure 3.11 The relative cumulative frequency curve (or ogive) for the percentage cumulative birth-
weight data in Table 3.3

on the vertical axis, move right to the ogive, then down to the value of about 3700 g on the
horizontal axis.

An example from practice

Figure 3.12 shows two per cent ogives for total cholesterol concentration in two groups taken
from a study into the effectiveness of health checks conducted by nurses in primary care
(Imperial Cancer Fund OXCHECK Study Group 1995)
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Figure 3.12 Percentage cumulative frequency curves for total cholesterol concentration in two groups.
Reproduced from BMJ, 310, 1099-104, courtesy of BMJ
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Exercise 3.11 (a) Comment on what Figure 3.12 reveals about the cholesterol levels in
the two groups. (b) Sketch percentage cumulative frequency curves for the age of the male
suicide attempters and later succeeders, shown in Table 3.2. For each of the two groups,
half of the subjects are older than what age?

Calls herself

Charting time-based data - the time series chart

If the data you have collected are from measurements made at regular intervals of time (minutes,
weeks, years, etc.), you can present the data with a time series chart. Usually these charts are
used with metric data, but may also be appropriate for ordinal data. Time is always plotted on
the horizontal axis, and data values on the vertical axis.
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Figure 3.13 Suicide rates for males and females aged 15-29 years in England and Wales
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Table 3.4 Choosing an appropriate chart

Histogram
Data type Pie chart  Barchart  (if grouped)  Step chart Ogive
Nominal yes yes no no no
Ordinal no yes no yes (cumulative)  no
Metric discrete no yes yes yes (cumulative)  yes (cumulative)
Metric continuous ~ no no yes no yes (cumulative)

An example from practice

Figure 3.13 shows the suicide rates (number of suicides per one million of population), for males
and females aged 15-29 years in England and Wales, between 1974 and 1999. The contrasting
patterns in the male/female rates are noticeable, more perhaps in this chart form than if shown
in a table.

There is one other useful chart, the boxplot, but that will have to wait until we meet some
new ideas in the next two chapters. Meanwhile Table 3.4 may help you to decide on the most
appropriate chart for any given set of data.
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Describing data from its shape

Learning objectives

When you have finished this chapter you should be able to:

e Explain what is meant by the ‘shape’ of a frequency distribution.

Sketch and explain: negatively skewed, symmetric and positively skewed distributions.

Sketch and explain a bimodal distribution.

Describe the approximate shape of a frequency distribution from a frequency table or
chart.

Sketch and describe a Normal distribution.

The shape of things to come

I have said previously that the choice of the most appropriate procedures for summarising
and analysing data will depend on the type of variable involved. Variable type is the most
important consideration. In addition, however, the way the data are distributed — the shape of
the distribution, can also be influential. By ‘shape’ I mean:

® Are the values fairly evenly spread throughout their possible range? This is a uniform
distribution.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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® Are most of the values concentrated towards the bottom of the range, with progressively
fewer values towards the top of the range? This is a right or positively skewed distribution. . .

e .. or towards the top of the range, with progressively fewer values towards the bottom of
the range? This is a left or negatively skewed distribution.

® Do most of the values clump together around one particular value, with progressively fewer
values both below and above this value? This is a symmetric or mound-shaped distribution.

® Do most of the values clump around two or more particular values? This is a bimodal or
multimodal distribution.

One simple way to assess the shape of a frequency distribution is to plot a bar chart, or a
histogram. Here are some examples of the shapes described above.

Negative skew!

Figure 4.1 shows age distribution of 2454 patients with acute pulmonary embolism and is drawn
from 52 hospitals in seven countries (Goldhaber et al. 1999). You can see that most values lie
towards the top end of the range, with progressively fewer lower values. This distribution is
negatively skewed.

Exercise 4.1 In Figure 4.1, which age group has: (a) the highest number of patients? (b)
the lowest number?

Positive skew

The histogram in Figure 4.2 shows serum E, levels from a study of hormone replacement
therapy for osteoporosis prevention (Rodgers and Miller 1999). This distribution has most of
its values in the lower end of the range with progressively fewer towards the upper end. There
is a single high valued outlier. This distribution is positively skewed.

Exercise 4.2 In Figure 4.2, if the outlier was removed, would the distribution be less or
more skewed?

! Skewness is the primary measure used to describe the asymmetry of frequency distributions, and many com-
puter programs will calculate a skewness coefficient for you. This can vary between —1 (strong negative skew),
and +1 (strong positive skew). Values of zero or close to it, indicate lower levels of skew, but do not necessarily
mean that the distribution is symmetric.
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Figure 4.1 An example of negative skew. The age distribution of 2454 patients with acute pulmonary
embolism. Reproduced with permission from Elsevier (The Lancet, 1999, Vol No. 353, pp. 1386-9)
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Figure 4.2 An example of positive skew. Serum E2 levels in 45 patients in a study of HRT for the
prevention of osteoporosis. Reproduced with permission of the British Journal of General Practice (1997,

Vol. 47, pages 161-165)
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Figure 4.3 Histogram of mammography utilisations rate (per 1000 women), by broad age group, in
33 health districts in Ontario. Reproduced from J. Epid. Comm. Health, 51, 378-82, courtesy of BMJ
Publishing Group

Symmetric or mound-shaped distributions

The bar chart in Figure 4.3 is from a study into the use of the mammography service by
women in the 33 health districts of Ontario, from mid-1990 to end-1991 (Goel et al. 1997).
It shows the variation in the utilisation rates’ by women for a number of age groups. You
can see that the distribution is reasonably symmetric and mound shaped, and has only one
peak.

Exercise4.3 (a) Whatsort of skew is exhibited by the Apache scores in Figure 3.5? (b) The
simple bar chart in Figure 4.4 is from a study describing the development of a new scale
to measure psychiatric anxiety, called the Psychiatric Symptom Frequency scale (PSF)
(Lindelow et al.), Describe the shape of the distribution of PSF in terms of symmetry,
skewness, etc. Does this chart tell the whole story?

Exercise 44 Comment on the shapes of the age distributions shown in Table 3.2, for
male and female suicide attempters, and later succeeders (you may also want to look at
the histograms you drew in Exercise 3.9).

2 The utilisation rate is the number of consultations per 1000 women.
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Figure 4.4 Simple bar chart showing the lowest 95 per cent of values of the Psychiatric Symptom
Frequency scale. Reproduced from J. Epid. Comm. Health, 51, 549-57, courtesy of BMJ Publishing Group

Bimodal distributions

A bimodal distribution is one with two distinct humps. These are less common than the shapes
described above, and are sometimes the result of two separate distributions, which have not been
disentangled. Figure 4.5 shows a hypothetical bimodal distribution of systolic blood pressure.
The upper peak could be due to a sub-group of hypertensive patients, but whose presence in
the group has not been separately identified.
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0 \
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Systolic blood pressure (mmHg)

Figure 4.5 A bimodal frequency distribution
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Normal-ness

There is one particular symmetric bell-shaped distribution, known as the Normal distribution,
which has a special place in the heart of statisticians.” Many human clinical features are dis-
tributed Normally, and the Normal distribution has a very important role to play in what is to
come later in this book.

Tt the Normal
Invastion

An example from practice

Figure 4.6 shows a histogram for the distribution of the cord platelet count (10°/1), in 4382
Finnish infants, from a study of the prevalence and causes of thrombocytopenia* in full-term
infants (Sainio et al. 2000). You can see, even without the help of the Normal curve superimposed
upon it, that the distribution has a very regular bell-shaped symmetric distribution — in fact is
pretty well as Normal as it gets with real data.

Although the Normal distribution is one of the most important in a health context, you may
also encounter the binomial and Poisson distributions. As an example of the former, suppose
you need to choose a sample of 20 patients from a very large list of patients, which contains equal
numbers of males and females. The chance of choosing a male patient is thus 1 in 2. Provided
that the probability of picking a male patient each time remains fixed at 1 in 2, the binomial
equation will tell you the probability of getting any given number of males (or females), in
your 20 selected patients. For example, the probability of getting eight males in a sample of 20
patients is 0.1201 — about 12 chances in a 100.

3 Note the capitalised, ‘N’ to distinguish this statistical usage from that of the word ‘normal’ meaning usual,
ordinary, etc.

* Thrombocytopenia is deemed to exist when the cord platelet count is less than 150 x 10°/1. It is a risk factor
for intraventricular haemorrhage and contributes to the high neurological morbidity in infants affected.
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Figure 4.6 A Normal frequency curve superimposed on a histogram of cord platelet count (10°/1) in
4382 infants. Reproduced from Obstetrics and Gynecology, 95, 441-4, courtesy of Lippincott Williams
Wilkins

The Poisson distribution is appropriate for calculating chance or probability when events
occur in a seemingly random and unpredictable fashion. It describes the probability of a given
number of events occurring in a fixed period of time. For example, suppose that the average
number of children with burns arriving at an Emergency Department in any given 24-hour
period is 12. Then the Poisson equation indicates that the probability of one child with burns
arriving in the next hour is 30 in 100, the probability of two is about 7 in a 100.

To sum up so far. You have seen that you can describe the principal features of a set of data
using tables and charts. A description of the shape of the distribution is also an important
part of the picture. In the next chapter you will meet a way of describing data using numeric
summary values.
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Describing data with numeric
summary values

Learning objectives

When you have finished this chapter, you should be able to:

Explain what prevalence and incidence are.

Explain what a summary measure of location is, and show that you understand the
meaning of, and the difference between, the mode, the median and the mean.

Be able to calculate the mode, median and mean for a set of values.

Demonstrate that you understand the role of data type and distributional shape in
choosing the most appropriate measure of location.

Explain what a percentile is, and calculate any given percentile value.

Explain what a summary measure of spread is, and show that you understand the
difference between, and can calculate, the range, the interquartile range and the
standard deviation.

Show that you can estimate percentile values from an ogive.

Demonstrate that you understand the role of data type and distributional shape in
choosing the most appropriate measure of spread.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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® Draw a boxplot and explain how it works.

e Show that you understand the area properties of the Normal distribution, and how
these relate to standard deviation.

Numbers R us

As you saw in the previous two chapters, we can ‘describe’ a mass of raw data by charting it,
or arranging it in table form. In addition, we can examine its shape. These procedures will
help us to make some sense of what initially might be a confusing picture, and hopefully to see
patterns in the data. As you are about to see, however, it is often more useful to summarise the
data numerically. There are two principal features of a set of data that can be summarised with
a single numeric value:

® First, a value around which the data has a tendency to congregate or cluster. This is called a
summary measure of location.!

® Second, a value which measures the degree to which the data are, or are not, spread out,
called a summary measure of spread or dispersion.

With these two summary values you can then compare different sets of data quantitatively.
Before 1 discuss these two measures, however, I want to look first at a number of simpler
numeric summary measures.

Numbers, percentages and proportions

When you present the results of an investigation, you will almost certainly need to give the
numbers of the subjects involved; and perhaps also provide values for percentages. In Table 1.6,
the authors give the percentage of subjects who are in each ‘social class’ category. For example,
26 per cent, i.e. (28/106) x 100, and 32 per cent, i.e. (72/226) x 100, of the cases and controls
respectively, are in the category, ‘IIIl non-manual’ As in this example, it is usually categorical
data that are summarised with a value for percentage or proportion.

Exercise 5.1 The data in Table 5.1 are taken from a study of duration of breast feeding
and arterial distensibility leading to cardiovascular disease (Leeson et al. 2001). The table
describes the basic characteristics of two groups, 149 subjects who were bottle-fed as
infants, and 182 who were breast-fed. Using the values in the first row of the table in Table
3.2, calculate both the proportion and the percentage of men, among those subjects who
were: (a) breastfed; (b) bottle-fed.

! Also known as measures of central tendency.
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Table 5.1 Basic characteristics of two groups of individuals, breast-fed and bottle fed, from a
study of duration of breast feeding and arterial distensibility leading to cardiovascular disease.
Reproduced from BMJ, 322, 643-7, courtesy of BMJ Publishing Group

P value for difference

Variable Breast fed Bottle fed between groups
No of participants (men/women) 149 (67/82) 182 (93/89) —
Age (years) 23 (20 to 28) 23 (20 to 27) 0.07
Height (cm) 170 (10) 168 (9) 0.03
Weight (kg) 70.4 (14.5) 68.7 (13.1) 0.28
Body mass index (kg/m?) 24.2 (4.1) 24.3 (3.7) 0.83
Length of breast feeding (months) 3.33 (0 to 18) — —
Resting arterial diameter (mm) 3.32 (0.59) 3.28 (0.59) 0.45
Distensibility coefficient (mm/Hg™')  0.133 (0.07) 0.140 (0.08) 0.38
Cholesterol (mmol/l) 4.43 (0.99) 4.61 (1.01) 0.11
LDL cholesterol (mmol/1) 2.71 (0.88) 2.90 (0.93) 0.07
HDL cholesterol (mmol/l) 1.18 (0.25) 1.18 (0.31) 0.96
Systolic blood pressure (mm Hg) 128 (14) 128 (14) 0.93
Diastolic blood pressure (mm Hg) 70 (9) 71 (8) 0.31
Smoking history (No (%)):

Smokers 49 (33) 64 (35)

Former smokers 25 (17) 22 (12) 0.78

Non-smokers 75 (50) 96 (53)
No (%) in social class:

I 12 (8) 13 (7)

I 36 (24) 33 (18)

IINM 51 (34) 62 (34)

1M 24 (16) 36 (20) 0.19

v 22 (15) 33 (18)

A% 4 (3) 5(3)

LDL = Low density lipoprotein, HDL = High density lipoprotein.

Prevalence and the incidence rate

If appropriate we can also summarise data by providing a value for the prevalence or the in-
cidence rate of some condition. The point prevalence of a disease is the number of existing
cases in some population at a given time. In practice, the period prevalence is more often
used. We might typically report it as, ‘the prevalence of genital chlamydia in single women
in England in 1996 was 3.1 per cent’. The prevalence figure will include existing cases, i.e.
those who contracted the disease before 1996, and still had it, as well as those first get-
ting the disease in 1996. The incidence or inception rate of a disease is the number of new
cases occurring per 1000, or per 10 000, of the population,? during some period, usually
12 months.

2 Or whatever base is arithmetically appropriate.
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Exercise 5.2 (a) When a group of 890 women was tested for genital chlamydia with a
ligase chain reaction test, 23 of the women had a positive response. Assuming the test is
always 100 per cent efficient, what is the prevalence of genital chlamydia among women in
this group? (b) Suppose in a certain city that there were 10 000 live births in 2002. Ten of
the infants died of sudden infant death syndrome. What is the incidence rate for sudden
infant death syndrome in this city?

Summary measures of location

A summary measure of location is a value around which most of the data values tend to
congregate or centre. [ am going to discuss three measures of location: the mode; the median;
and the mean. As you will see, the choice of the most appropriate measure depends crucially
on the type of data involved. I will summarise which measure(s) you can most appropriately
use with which type of data, later in the chapter

The mode

The mode is that category or value in the data that has the highest frequency (i.e. occurs the
most often). In this sense, the mode is a measure of common-ness or typical-ness. As an example,
the modal Apgar score in Table 2.5 is 8, this being the category with the highest frequency (of 9
infants), i.e. is the most commonly occurring. The mode is not particularly useful with metric
continuous data where no two values may be the same. The other shortcoming of this measure
is that there may be more than one mode in a set of data.

Exercise 5.3 Determine the modal category for: (a) Social class for both cases and con-
trols, in the stress and breast cancer study shown in Table 1.6. (b) The level of satisfaction
with nursing care, from the data in Table 2.4. (c) The PSF score in Figure 4.4.

Exercise 5.4 What is the modal cause of injury in Table 2.3?

The median

If we arrange the data in ascending order of size, the median is the middle value. Thus, half
of the values will be equal to or less than the median value, and half equal to or above it.
The median is thus a measure of central-ness. As an example of the calculation of the median,
suppose you had the following data on age (in ascending order of years), for five individuals:
3031 32 33 35. The middle value is 32, so the median age for these five people is 32 years. If you
have an even number of values, the median is the average of the two values either side of the
‘middle’.
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An advantage of the median is that it is not much affected by skewness in the distribution, or
by the presence of outliers. However, it discards a lot of information, because it ignores most
of the values, apart from those in the centre of the distribution.

There is another, quite easy way, of determining the value of the median, which will also
come in useful a bit later on. If you have n values arranged in ascending order, then:

the median = 14(n + 1) value.
So, for example, if the ages of six people are: 30 31 32 33 35 36, then n = 6, therefore:
hin+1)=1hx(6+1)=1hx7=35.

Therefore the median is the 3.5th value. That is, it is the value half way between the 3rd value
of 32, and the 4th value of 33, or 32.5 years, which is the same result as before.

Exercise 5.5 (a) Determine the median percentage mortality of the 26 ICUs in Table 2.7
(see also Exercise 2.3). (b) From the data in Table 3.2, determine which age group contains
the median age for (i) men, and (ii) women, both for those attempting suicide, and for
later successful suicides.

The mean

The mean, or the arithmetic mean to give it its full name, is more commonly known as the
average. One advantage of the mean over the median is that it uses all of the information in the
data set. However, it is affected by skewness in the distribution, and by the presence of outliers
in the data. This may, on occasion, produce a mean that is not very representative of the general
mass of the data. Moreover, it cannot be used with ordinal data (recall from Chapter 1 that
ordinal data are not real numbers, so they cannot be added or divided).

Exercise 5.6 Comment on the likely relative sizes of the mean and median in the distri-
butions of (a) serum potassium and (b) serum E,, shown in the histograms in Figure 3.9
and Figure 4.2.

Exercise 5.7 Determine the mean percentage mortality in the 26 ICUs in Table 2.7, and
compare with the median value you determined in Exercise 5.5(a).

Exercise 5.8 The histogram of red blood cell thioguanine nucleotide concentration
(RBCTNC), in pmol/8 x 108 red blood cells, in 49 children, shown in Figure 5.1, is from a
study into the potential causes of high incidence of secondary brain tumours in children
after radiotherapy (Relling et al. 1999). (a) Using the information in the figure, calculate
median and mean RBCTNC for the 49 children. (b) Remove the two outlier values of
3300, and re-calculate the mean and median. Compare and comment on the two sets of
results.
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Figure 5.1 Histogram of red blood cell thioguanine nucleotide concentration (RBCTNC), in pmol/8 x
108 red blood cells, in 49 children. Reprinted courtesy of Elsevier (The Lancet 2002, 354, 34-9)

Percentiles

Percentiles are the values which divide an ordered set of data into 100 equal-sized groups. As
an illustration, suppose you have birthweights for 1200 infants, which you’ve put in ascending
order. If you identify the birthweight that has 1 per cent (i.e. 12) of the birthweight values below
it, and 99 per cent (1188) above it, then this value is the Ist percentile. Similarly, the birthweight
which has 2 per cent of the birthweight values below it, and 98 per cent above it is the 2nd
percentile. You could repeat this process until you reached the 99th percentile, which would
have 99 per cent (1188) of birthweight values below it and only 1 per cent above. Notice that
this makes the median the 50th percentile, since it divides the data values into two equal halves,
50 per cent above the median and 50 per cent below.

Calculating a percentile value

How do you determine any particular percentile value? Take the example of the 30 birthweights
in Table 2.5, which we reproduce below, but now in ascending order, along with their position
in the order:

2860 2994 3193 3266 3287 3303 3388 3399 3400 3421 3447 3508 3541 3594 3613
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3615 3650 3666 3710 3798 3800 3886 3896 4006 4010 4090 4094 4200 4206 4490
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The pth percentile is the value in the p/100(n + 1)th position. For example, the 20th percentile
is the 20/100(n + 1)th value. With the 30 birthweight values, the 20th percentile is therefore
the 20/100(30 + 1)th value = 0.2 x 31st value = 6.2th value. The 6th value is 3303 g and the
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7th value is 3388g, a difference of 85g, so the 20th percentile is 3303g plus 0.2 of 85g, which is
3303g + 0.2 x 85g = 3303g + 17g = 3320g.

You might be thinking, this all seems a bit messy, but a computer will perform these calcu-
lations effortlessly. As well as percentiles, you might also encounter deciles, which sub-divide
the data values into 10, not 100, equal divisions, and quintiles, which sub-divide the values into
five equal-sized groups. Collectively, we call percentiles, deciles and quintiles, n-tiles.

Exercise5.9 Calculate the 25th and 75th percentiles for the ICU per cent mortality values
in Table 2.7, and explain your results.

Choosing the most appropriate measure

How do you choose the most appropriate measure of location for some given set of data? The
main thing to remember is that the mean cannotbe used with ordinal data (because they are not
real numbers), and that the median can be used for both ordinal and metric data (particularly
when the latter is skewed).

As an illustration of the last point, look again at Figure 3.7 which shows the distribution of
the number of measles cases in 37 schools. Not only is this distribution positively skewed, it
has a single high-valued outlier. The median number of measles cases is 1.00, but the mean
number is 2.91, almost three times as many! The problem is that the long positive tail and
the outlier are dragging the mean to the right. In this case, the median value of 1 seems to be
more representative of the data than the mean. I have summarised the choices of a measure of
location in Table 5.2.

Table 5.2 A guide to choosing an appropriate
measure of location

Summary measure of location

Type of variable mode median mean
Nominal yes no no
Ordinal yes  yes no
Metric discrete yes yes, if distribution yes
Metric continuous no is markedly skewed  yes

Summary measures of spread

As well as a summary measure of location, a summary measure of spread or dispersion can
also be very useful. There are three main measures in common use, and once again, as you will
see, the type of data influences the choice of an appropriate measure.
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The range

The range is the distance from the smallest value to the largest. The range is not affected by
skewness, but is sensitive to the addition or removal of an outlier value. As an example, the
range of the 30 birthweights in Table 2.5 is (2860.0 to 4490.0) g. The range is best written like
this, rather than as the single-valued difference, i.e. as 1630 g, in this example, which is much
less informative.

Exercise 5.10 What are the ranges for age among those infants breast-fed, and those
bottle-fed in Table 3.2?

The interquartile range (iqr)

One solution to the problem of the sensitivity of the range to extreme value (outliers) is to
chop a quarter (25 per cent) of the values off both ends of the distribution (which removes any
troublesome outliers), and then measure the range of the remaining values. This distance is
called the interquartile range, or iqr. The interquartile range is not affected either by outliers or
skewness, but it does not use all of the information in the data set since it ignores the bottom
and top quarter of values.

Calculating interquartile range by hand (avoid if possible!)
To calculate the interquartile range by hand, you need first to determine two values:

® The value which cuts off the bottom 25 per cent of values; this is known as the first quartile
and denoted QI.

® The value which cuts off the top 25 per cent of values, known as the third quartile and denoted

Q3’
The interquartile range is then written as (Q1 to Q3). With the birthweight data: Q1 =
3396.25 g, and Q3 = 3923.50 g. Therefore: interquartile range = (3396.25 to 3923.50) g. This

result tells you that the middle 50 per cent of infants (by weight) weighed between 3396.25 g
and 3923.50 g.

An example from practice

Table 5.3 describes the baseline characteristics of 56 patients in an investigation into the use of
analgesics in the prevention of stump and phantom pain in lower-limb amputation (Nikolajsen

3 The median is sometimes denoted as Q2.
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etal. 1997). The ‘blockade’ group of patients were given bupivacaine and morphine, the control
(comparison) group, were given an identically administered saline placebo.

Asyou can see, two variables, ‘pain in week before amputation’, and ‘daily opioid consumption
at admission (mg)’, were summarised with median and interquartile range values. Pain was
measured using a visual analogue scale (VAS?), which of course produces ordinal data, so the
mean is not appropriate, and the authors have used the median and interquartile range as their
summary measures of location and spread.

The median level of pain in the blockade group is 51, with an iqr of (23.8 to 87.8).° This
means that 25 per cent of this group had a pain level of less than 23.8, and 25 per cent a pain
level greater than 87.8. The middle 50 per cent had a pain level between 23.8 and 87.8. I'll return
to the opioid consumption variable shortly.

Table 5.3 The baseline characteristics of 56 patients in an investigation into the use of
analgesics in the prevention of stump and phantom pain in lower-limb amputation. Reproduced
from The Lancet, 1994, 344, 1724-26, courtesy of Elsevier

Blockade group Control group
Characteristics of patients (n=27) (n=29)
Men/women 15/12 18/11
Mean (SD) age in years 72.8 (13.2) 70.8 (11.4)
Diabetes 10 14
Concurrent treatment because of cardiovascular disease 18 19
Previous stroke 3 2
Previous contralateral amputation 7 3
Median (IQR) pain in week before amputation 51 (23.8-8-78) 44 (25.3-68)
(VAS, 0-100 mm)
Median (IQR) daily opioid consumption at admission 50 (20—68.8) 30 (5-62.5)
(mg)
Level of amputation
Below knee 15 16
Through knee-joint 5 2
Above knee 7 11
Reamputations during follow-up 3 2
Died during follow-up 10 10

Exercise5.11 Calculate the iqr for the ICU percentage mortality values in Table 2.7. (You
have already calculated the 25th and 75th percentiles in Exercise 5.9).

Exercise 5.12 Interpret the median and interquartile range values for pain in the week
before amputation, for the control group in Table 5.3.

4 See Chapter 1.
> The table contains a typographical error, recording 87.8 as ‘8-78".
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Estimating the median and interquartile range from the ogive

As Iindicated earlier, you can estimate the median and the interquartile range from the cumu-
lative frequency curve (the ogive). Figure 5.2 shows the ogive for the cumulative birthweight
data in Table 3.3.
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Figure 5.2 Using the relative cumulative frequency curve (or ogive) of birthweight to estimate the
median and interquartile range values (Note that this should be a smooth curve)
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If you draw horizontal lines from the values 25 per cent, 50 per cent and 75 per cent on
the y axis, to the ogive, and then down to the x axis, the points of intersection on the x axis
approximate values for Q1, Q2 (the median), and Q3, of 3400 g, 3650 g and 3900 g. Thus, if
you happen to have an ogive handy, these approximations can be helpful. I plotted per cent
cumulative frequency because it makes it slightly easier to do find the percentage values. Notice
that you can also use the ogive to answer questions like, ‘What percentage of infants weighed
less than, say, 4000 g?” The answer is that a value of 4000 g on the x axis produces a value of
80 per cent for cumulative frequency on the y axis.

Exercise 5.13 Estimate the median and iqr for total blood cholesterol for the control
group from the ogive in Figure 3.12.

The boxplot

Now that we have discussed the median and interquartile range, I can introduce the boxplot as
I promised in Chapter 3. The general discussion on measures of spread continues overleaf if
you want to continue with this and come back to consider the boxplot later. Boxplots provide
a graphical summary of the three quartile values, the minimum and maximum values, and any
outliers. They are usually plotted with value on the vertical axis. Like the pie chart, the boxplot
can only represent one variable at a time, but a number of boxplots can be set alongside each
other.

An example from practice
Figure 5.3 is from the same study as Figure 4.3, into the use of the mammography service in
the 33 health districts of Ontario, in which investigators were interested in the variation in the

mammography utilisation rate across age groups (Goel et al. 1997). They supplemented their
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Figure 5.3 Boxplots of the rate of use of mammography services in 33 health districts in Ontario.
Reproduced from J. Epid. Comm. Health, 51, 378-82, courtesy of BMJ Publishing Group
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results with the boxplots shown in the figure, for the age groups: (30-39); (40-49); (50-59);
and 70+ years. The vertical axis is the mammography utilisation rate (visits per 1000 women),
in the 33 health districts. Outliers are denoted by the small open circles.

Let’s look at the third boxplot, that for the women aged 50-69:

® The bottom end of the lower ‘whisker’ (the line sticking out of the bottom of the box),
corresponds to the minimum value — about 125 visits per 1000 women.

® The bottom of the box is the 1st quartile value, Q1. So about 25 per cent of women had a
utilisation rate of 175 or less visits per 1000 women.

® The line across the inside of the box (it won’t always be half-way up), is the median, Q2.
So half of the women had a utilisation rate of less than about 200 consultations per 1000
women, and half a rate of more than 200. The more asymmetric (skewed) the distributional
shape, the further away from the middle of the box will be the median line, closer to the top
of the box is indicative of negative skew, closer to the bottom of the box — positive skew.

® Thetop oftheboxisthe third quartile Q3. Thatis, abouta quarter of women had a consultation
rate of 225 or more per 1000.

® The top end of the upper whisker is the ‘maximum’ mammography utilisation rate — about
275 consultations per 1000 women. This is the maximum value that can be considered still
to be part of the general mass of the data. Because. . .

o . .there is one outlier. One of the health districts reported a utilisation rate of about 300 per
1000 women.® This is, of course, the actual maximum value in the data.

Exercise 5.14 Sketch the box plot for the percentage mortality in ICUs shown in Table
2.7. (Note that you have already calculated the median and iqr values in Exercises 5.6 and
5.10). What can you glean from the boxplot about the shape of the distribution of the ICU
percentage mortality rate?

Exercise 5.15 The boxplots in Figure 5.4 are from a study of sperm integrity in adult
survivors of childhood cancer compared to a control group of non-cancer individuals
(Thomson et al. 2002). What do the two boxplots tell you?

Standard deviation
The limitation of the interquartile range as a summary measure of spread is that (like the

median) it doesn’t use all of the information in the data, since it omits the top and bottom

¢ Qutliers are defined in various ways by different computer programs. Outliers are here defined as any value
more than thee halves of the interquartile range greater than the third quartile, or less than the first quartile.
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Figure 5.4 Boxplots from a study of sperm integrity in adult survivors of childhood cancer, compared
to a control group of non-cancer individuals. Reprinted from The Lancet 2002, 360, 361-6, Fig. 2,
p. 364, courtesy of Elsevier

quarter of values. An alternative approach uses the idea of summarising spread by measuring
the mean (average) distance of all the data values from the overall mean of all of the values.
The smaller this mean distance is, the narrower the spread of values must be, and vice versa.
This idea is the basis for what is known as the standard deviation, or s.d. The following way of
calculating the sample standard deviation by hand illustrates this idea:’

® Subtract the mean of the sample from each of the n sample values in the sample, to give the
difference values.

Square each of these differences.

Add these squared values together (called the sum of squares).

Divide the sum of squares by (1 — 1); i.e. divide by 1 less than the sample size.?

Take the square root. This is the standard deviation.

One advantage of the standard deviation is that, unlike the interquartile range, it uses all of the
information in the data.

7This is a very tedious procedure. If you have an s.d. key on your calculator use that. Better still, use a computer!

81f we divide by n, as we normally would do to find a mean, we get a result which is slightly too small. Dividing
by (n— 1) adjusts for this. Technically, the sample s.d. is said to be a biased estimator of population s.d. See
Chapter 7 for the meaning of sample and population.
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Exercise 5.16 In Figure 4.6 the authors tell us that the mean cord platelet count is
308x10°/1, and the standard deviation is 69x10°/1 (notice the two measures have the
same units).! Explain what this value means.

An example from practice

In Table 5.3, the analgesic/amputation pain study, the authors summarise the age of the patients
in the study with the mean and standard deviation. As you can see, the spread of ages in the
blockade group is wider than in the control group, 13.2 years around a blockade group’s mean
of 72.8 years, compared to 11.4 years around a control group’s mean of 70.8 years.

The authors could also have used the mean and standard deviation for daily opioid consump-
tion (mg), since this is a metric variable, but instead used the median and interquartile range;
there are a number of possible reasons for this. First, the data may be noticeably skewed and/or
contained outliers, perhaps making the mean a little too unrepresentative of the general mass
of data. Or the investigators may have specifically wanted a summary measure of central-ness,
which the median provides. Third, they may have felt that asking people to recall their opioid
consumption last week was likely to lead to fuzzy, imprecise, values, and so have preferred to
treat them as if they were ordinal.

Exercise 5.17 Calculate and interpret the standard deviation for the ICU percentage
mortality values in Table 2.7. (You have already calculated the mean percentage mortality
in Exercise 5.7). I would hesitate to do this without a calculator with a standard deviation
function.

To sum up summary measures of spread: with ordinal data use either the range or the
interquartile range. The standard deviation is not appropriate because of the non-numeric
nature of ordinal data. With metric data use either the standard deviation, which uses all of
the information in the data, or the interquartile range. The latter if the distribution is skewed,
and/or you have already selected the median as your preferred measure of location. Don’t mix-
and-match measures — standard deviation goes with the mean, and iqr with the median. These
points are summarised in Table 5.4.

Table 5.4 Choosing an appropriate measure of spread

Summary measure of spread

Type of variable Range Interquartile range  Standard deviation

Nominal No No No
Ordinal Yes Yes No
Metric Yes Yes, if skewed Yes

110° means 1000 000 000.
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Figure 5.5 The area properties of the Normal distribution illustrated with the birthweight data

Standard deviation and the Normal distribution

If you are working with metric data which is distributed Normally, the standard deviation has
one very useful property that relates to the percentage of data between certain values. These
area properties of the Normal distribution are illustrated in Figure 5.5 for the histogram of
birthweight data from Table 2.5,° through which a Normal curve is drawn. Minitab calculates
these birthweights to have a mean of 3644 g, and a standard deviation of 377 g. In words, the
area properties are as follows:

e About 68 per cent of the birthweights will lie within one standard deviation either side of the
mean. That is, from 3644 g — 377 g to 3644 g + 377 g, or from 3267 g to 4021 g.

® About 95 per cent of the birthweights will lie within two standard deviations either side of
the mean. That is, from 3644 g — 754 g to 3644 g + 754 g, or from 2890 g to 4398 g.

e About 99 per cent of the birthweights will lie within three standard deviations either side of
the mean. That is, from 3644 g — 1131 g to 3644 g + 1131 g, or from 2513 g to 4775 g.

So, if you have some data that you know is Normally distributed, and you also know the
values of the mean and standard deviation, then you can make statements such as, ‘I know that
95 per cent of the values must lie between so-and-so and so-and-so’

®Which is reasonably Normally distributed.
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An example from practice

To illustrate the usefulness of the Normal area properties, look again at the histogram of the
cord platelet count for 4382 infants in Figure 4.6, which appears to be reasonably Normal, and
has a mean of 308 x 107/, and a standard deviation of 69 x 10%/1. You can therefore say that
about two-thirds (67 per cent) of the 4382 infants, i.e. 2936 infants, had a cord platelet count
between 308 — 69 and 308 + 69, which is between 239 and 377 10°/1.

Table 5.5 Output measures from a study of the effectiveness of lisinopril as a
prophylactic for acute migraine. Figures are means (SD). Reproduced from BMJ, 322,
19-22, courtesy of BMJ Publishing Group

Mass % reduction

Lisinopril Placebo (95% Cl)
Primary efficacy parameter
Hours with headache 129 (125) 162 (142) 20 (5 to 36)
Days with headache 19.7 (14) 23.7 (11) 17 (5 to 30)
Days with migraine 14.5 (11) 18.5 (10) 21 (9 to 34)
Secondary efficacy parameter
Headache severity index 297 (325) 370 (310) 20 (3 to 37)
Triptan doses 15.7 (15) 20.2 (17) 22 (7 to 38)
Doses of analgesics 14.5 (23) 16.2 (20) 11 (—16to 37)
Days with sick leave 2.30 (4.32) 2.09 (2.50) —10 (—64 to 37)
Bodily pain* 63.7 (29) 53.8 (23) —18 (—=35to —1)
General health* 73.6 (20) 74.1 (21) 1 (—6to7)
Vitality* 61.1 (24) 58.2 (21) —5 (—18 t0 8)
Social functioning” 81.4 (25) 79.5 (23) —2(—11to6)
* From SF-36.

Exercise 5.18 Table 5.5 is from a study of the effectiveness of lisinopril as a prophylactic
for acute migraine, in which one group of patients was given lisinopril, and a second group
aplacebo (Schrader et al. 2001). Outcome measures included, ‘hours with headache’, ‘days
with headache’ and ‘days with migraine} all metric continuous variables. The mean and
standard deviation for each of these variables for both groups is shown in the figure. Do
you think they can be Normally or symmetrically distributed? Explain your answer.

Transforming data

Later in the book you will meet some procedures which require the data to be Normally
distributed. But what if it isn’t? Happily some non-Normal data can be transformed to make the
distribution more Normal (or at least more Normal than it was to start with). The most popular
approach is to take the log of the data (to base 10); first because it works more often than other
procedures, and second because the back-transformation (i.e. anti-logging the results at the
end of the analysis) can be meaningfully interpreted.
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Figure 5.6 The effect of applying a logy, transformation on the shape of the distribution of the weight
of 658 women
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An example from practice

Figure 5.6 shows histograms for the original and transformed data on the weight (kg) of 685
women in a diet and health cohort study.'” The original data is positively skewed, Figure 5.6a.
If we transform the data by taking logs;o, you can see that the transformed data has a more
Normal-ish shape, Figure 5.6b.

In Part II, I have discussed ways of looking at sample data — with tables, with charts, from its
shape, and with numeric summary measures. Collectively these various procedures are labelled
descriptive statistics. However, in all of the above, I assumed that you already had the data that
you were describing, and I've said nothing so far about how you might collect the data in the
first place. This is the question I will address in the following chapter.

19This data was kindly supplied by Professor Janet Cade of Leeds University Medical School.
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Doing it right first time -
designing a study

Learning objectives

When you have finished this chapter you should be able to:

® Explain what a sample is, and what the difference between study and target popula-
tions is.

e Explain why it is important for a sample to be as representative of the population
from which it is taken as possible.

e Define a random sample, and explain what a sampling frame is.

e Briefly outline what is meant by a contact sample, and by stratified and systematic
samples.

e Explain the difference between observational and experimental studies.
e Explain the difference between matched and independent groups.

e Briefly describe case-series, cross-section, cohort and case-control studies, and their
limitations and advantages.

e Explain the problem of confounding.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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e (Qutline the general idea of the clinical trial.

Explain the concept of randomisation, and why it is important, and demonstrate that
you can use a random number table to perform a simple block randomisation.

Describe the concept of blinding, and what it is intended to achieve.

Outline and compare the design of the parallel and cross-over randomised controlled
trials, and summarise their respective advantages and shortcomings.

Explain what intention-to-treat means.

Be able to choose an appropriate study design to answer some given research question.

Hey ho! Hey ho! It's off to work we go

There are two main threads here. First, the study design question, and second, the data collection
question. Study design embraces issues like:

® What is the research question? What are we hypothesising?

® Which variables do we need to measure?

e Which is our main outcome variable (the variable we are most interested in)?
® How many subjects need to be included in the study?

® Who exactly are the subjects? How should we select them?

® How many groups do we need?

® Are we going to make some form of clinical intervention or simply observe?

Do we need a comparison group?

At what stage are we going to take measurements? Before, during, after, etc.?

® How long will the study take? And so on.

Study designis a systematic way of dealing with these issues, and offers a good-practice blueprint
that is applicable in almost all research situations.

Second, the data collection question. Having decided an appropriate study design, we then
have to consider the following:

® How are we going collect the data from the subjects?

® How do we ensure that the sample is as representative as possible?

I want to start with the data collection question. First, though, a brief mention of what we mean
by a population.
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STUDY POPULATION

TARGET POPULATION SAMPLE

All low-birthweight
babies born in three
maternity units in

Birmingham in 2007.

All low-birthweight babies
born in the UK in 2007.

The last 300
babies born in
these three
maternity units.

Figure 6.1 The target population, the study population and the sample

Samples and populations

In clinical research, we usually study a sample of individuals who are assumed to be repre-
sentative of a wider group, to whom (with a good research design and appropriate sampling)
the research might apply. This wider group is known as the target population, for example ‘all
low-birthweight babies born in the UK in 2007

It would be impossible to study every single baby in such a large target population (or every
member of any population). So instead, we might choose to take a sample from a (hopefully)
more accessible group. For example, ‘all low-birthweight babies born in three maternity units
in Birmingham in 2007’ This more restricted group is the study population. Suppose we take
as our sample the last 300 babies born in these three maternity units. What we find out from
this sample we hope will also be true of the study population, and ultimately of the target
population. The degree to which this will be the case depends largely on the representativeness
of our sample. These ideas are shown schematically in Figure 6.1. I'll have more to say about
this process in Chapter 7.

Exercise 6.1 Explain the differences between a target population, a study population and
a sample. Explain, with an example, why it is almost never possible to study every member
of a population.

Sampling error

Needless to say, samples are never perfect replicas of their populations, so when we draw
a conclusion about a population based on a sample, there will always be what is known as
sampling error. For example, if the percentage of women in the UK population with genital
chlamydia is 3.50 per cent (we wouldn’t know this of course), and a sample produces a sample
percentage of 2.90 per cent, then the difference between these two values, 0.60 per cent, is the
sampling error. We can never completely eliminate sampling error, since this is an inherent
feature of any sample.
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Collecting the data - types of sample

Now the data collection question. There are many books wholly dedicated to the various
methods of collecting sample data. I am going to do little more than mention a couple of these
methods by name. Those interested in more details of the methods referred to should consult
other readily available sources.

The simple random sample and its offspring

The most important consideration is that any sample should be representative of the population
from which it is taken. For example, if your population has equal numbers of male and female
babies, but your sample consists of twice as many male babies as female, then any conclusions
you draw are likely to be, at least, misleading. Generally, the most representative sample is a
simplerandom sample. The only way thata simple random sample will differ from the population
will be due to chance alone.

For a sample to be truly random, every member of the population must have an equal chance
ofbeingincluded in the sample. Unfortunately, thisis rarely possible in practice, since this would
require a complete and up-to-date list (name and contact details) of, for example, every low-
birthweight baby born in the UK in 2007. Such a list is called a sampling frame. In practice,
compiling an accurate sampling frame for any population is hardly ever going to be feasible!

This same problem applies also to two close relatives of simple random sampling — systematic
random sampling, and stratified random sampling. In the former, some fixed fraction of the
sampling frame is selected, say every 10th or every 50th member, until a sample of the required
size is obtained. Provided there are no hidden patterns in the sampling frame, this method will
produce samples as representative as a random sample. In stratified sampling, the sampling
frame s first broken down into strata relevant to the study, for example men and women; or non-
smokers, ex-smokers and smokers. Then each separate stratum is sampled using a systematic
sampling approach, and finally these strata samples are combined. But both methods require
a sampling frame.

Contact or consecutive samples

The need for an accurate sampling frame makes random sampling impractical in any realistic
clinical setting. One common alternative is to take as a sample, individuals in current or recent
contact with the clinical services, such as consecutive attendees at a clinic. For example, in the
study of stress as a risk factor for breast cancer (Table 1.6), the researchers took as their sample
332 women attending a clinic at Leeds General Infirmary for a breast lump biopsy.

Alternatively, researchers may study a group of subjects in situ, for example on a ward, or
in some other setting. In the nit lotion study (Table 2.1), researchers took as their sample
all infested children from a number of Parisian primary schools, based on the high rates of
infestation in those same schools the previous year.

If your sample is not a random sample, then the obvious question is, ‘How representative
is it of the population?” And, moreover, which population are we talking about here? In the
breast cancer study, if the researchers were confident that their sample of 332 women was
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reasonably representative of all such women in the Leeds area (their study population), then
they would perhaps have felt justified in generalising their findings to this population, and
maybe to all women in the UK (a possible target population). But if they knew that the women
in their sample were all from a particularly deprived (or particularly affluent) part of the city,
or if some ethnic minority formed a noticeably large proportion of the women, then such a
generalisation would be more risky.

Exercise 6.2 What is the principal advantage of random sampling? What is the principal
drawback of this approach? Describe another method of getting samples that is used in
clinical research.

Types of study

With thisbrief look at the data collection problem, I want to return now to the study design ques-
tion. Study design divides into two main types. Some alternative ways of classifying these are:

® Observational versus experimental studies.
® Prospective versus retrospective studies.

® Longitudinal versus cross-sectional studies.

I am going to use the first classification, although I will explain the other terms along the
way. Broadly speaking, an observational study is one in which researchers actively observe the
subjects involved, perhaps asking questions, or taking some measurements, or looking at clinical
records, but they don’t control, change or effect in any way, their selection, treatment or care.
An experimental study, on the other hand, does involve some sort of active intervention with
the subjects. I will first discuss a number of types of observational study designs.

Exercise 6.3 What is the fundamental difference between an observational study and an
experimental study?

Observational studies

There are four principal types of observational study:

® (Case-series.

e Cross-section studies.

Cohort studies.

e Case-control studies.
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Case-series studies

A health carer may see a series of patients (cases) with similar but unusual symptoms or
outcomes, find something interesting and write it up as a study. This is a case-series.

An example from practice

In 1981 adrugtechnician at the Centre for Disease Controlin the USA, noticed an unusually high
number of requests for the drug pentamidine, used to treat Pneumocystis carinii pneumonia
(PCP). This led to a scientific report, in effect a case-series study, of PCP occurring unusually in
five gay men in Los Angeles. At the same time a similar outbreak of Kaposi’s Sarcoma (previously
rare except in elderly men) in a small number of young gay men in New York, also began to
raise questions. These events signalled the arrival of HIV in the USA.

In the same way, new variant CJD was also first suspected from an unusual series of deaths of
young people in the UK, from an apparent dementia-like illness, a disease normally associated
with the elderly. Case-series studies often point to a need for further investigations, as was the
case in each one of these quoted examples.

Cross-section studies

A cross-section study aims to take a ‘snapshot’ of some situation at some particular point in
time,! but notably data on one or more variables from each subject in the study is collected
only once.

An example from practice

The following extract is from a cross-section study carried out in 1993 on 2542 rural Chinese
subjects, into the relationship between body mass index? and cardiovascular disease, in a rural
Chinese population (1st paragraph in text below) (Hu et al. 2000). The population of this
region of China was about 6 million, and the 2542 individuals included in the sample were
selected using a two-stage sampling process, as the 2nd paragraph explains. Each subject was
then interviewed and the necessary measurements were taken (3rd paragraph).

A total of 2 542 subjects aged 20-70 years from a rural area of Anqing, China,
participated in a cross-sectional survey, and 1 610 provided blood samples in 1993.
Mean BMI (kg/m?) was 20.7 for men and 20.9 for women. . .

!In practice this ‘point’ in time may in fact be a short-ish period of time.

2Body mass index, used to measure obesity, is equal to a person’s weight (kg) divided by their height squared
(m)2. A bmi of between 20 to 25 is considered ‘normal’, 25 to 30 indicates a degree of obesity. Higher scores
indicate greater levels of obesity.
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... These participants were selected from 20 townships in four counties based on a
two-stage sampling approach. The sampling unit is a village in the first stage and a
nuclear family in the second stage, based on the following criteria: 1) both parents
are alive; and 2) there are at least two children in the family. We limited the analysis
to 2 542 participants aged 20 years or older from 776 families. . .

... Trained interviewers administered questionnaires to gather information on each
participant’s date of birth, occupation, educationlevel, current cigarette smoking, and
alcohol use. . . measurements, including height and weight, were taken using standard
protocols, with subjects not wearing shoes or outer-wear. BMI was calculated as
weight (kg)/height (m?). Blood pressure measurements were obtained by trained
nurses after subjects had been seated for 10 minutes by using a mercury manometer
and appropriately sized culffs, according to standard protocols.

Note that there is no intervention by the researchers into any aspect of the subjects’ care or
treatment — the observers only take measurements, ask some questions or study records. The
results from the above study showed that subjects in the sample with higher body mass index
values were also likely to have higher blood pressures. The researchers might reasonably claim
that this link would also exist in the province’s population of 6 million — that’s their inference—
but the truth of this would depend on how representative the sample was of the whole Anging
population. Whether or not the finding could be extended to the rest of the diverse Chinese
population is more questionable. To sum up, cross-section studies:

® Take only one measurement from each subject at one moment in, or during one period of,
time. Data from one or more than one variable may be collected.

® Can be used to investigate a link between two or more variables, but not the direction of any
causal relationship. The Anqing study does not reveal whether a higher body mass index leads
to higher blood pressures (more strain on the heart, for example), or whether higher blood
pressures lead to higher body mass index (maybe higher blood pressures increase appetite),
it simply establishes some sort of association.

® Are not particularly helpful if the condition being investigated is rare. If, for example, only
0.1 per cent of a population has some particular disease, then a very large sample would be
needed to provide any reliable results. Too small a sample might lead you to conclude that
nobody in the population had the disease!

® Can be more limited in scope and aim only to describe some existing state of affairs, such as
the prevalence of some condition — for example, the percentage of 16+ UK individuals who
have taken ecstasy. Only one variable is measured — use of ecstasy, yes or no. Since this is the
only variable measured, no link with any other variable can be explored.

e Thataim to uncover attitudes, opinions or behaviours, are often referred to as surveys. For ex-
ample, the views of clinical staff towards having patients’ relatives in Emergency Department
trauma rooms.
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Exercise6.4 Give two examples of the application of the cross-section design in a clinical
setting.

From here to eternity — cohort studies

The main objective of a cohort study is to identify risk factors causing a particular outcome, for
example death, or lung cancer, or stroke, or low-birthweight babies and so on. The principle
structure of a cohort study (also known as a follow-up, prospective, or longitudinal study) is as
follows:

® A group of individuals is selected at random from the general population, for example all
women living in Manchester. . .

e . .or from a particular population, for example all call-centre workers. . .
e . .orviaa clinical setting, for example women diagnosed with breast cancer.

e The group is followed forward over a period of time,? and the subjects monitored on their
exposure to suspected risk factors, or to different clinical interventions.

® At the end of the study, a comparison is made between groups with and without the outcome
of interest (say cardio-vascular disease), in terms of their exposure over the course of the
study to a suspected risk factor (e.g. smoking, lack of exercise, diet, etc.).

® A reasoned conclusion is drawn about the relationship between the outcome of interest and
the suspected risk factor or intervention.

A well-known prospective cohort study was that conducted by Doll and Hill into a possible
connection between mortality and cigarette smoking. They recruited about 60 per cent of the
doctors in the UK, determined their age and smoking status (among other things), and then
followed them up over the ensuing years, recording deaths as they arose. Very quickly the data
began to show significantly higher mortality among doctors who smoked.

In some cohort studies, the data may be collected from existing historical records, and
subjects followed from some time starting in the past, as the following example demonstrates.

An example from practice

An investigation of the relationship between weight in infancy and the prevalence of coronary
heart disease (CHD) in adult life used a sample of 290 men born between 1911 and 1930, and
living in Hertfordshire, whose birthweights and weights at one year were on record. In 1994

3 Note that ‘forward’ doesn’t necessarily mean from today, although prospective cohort studies do follow subjects
forward from the time the study is initiated.
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various measurements were made on the 290 men, including the presence or not of CHD (Fall
et al. 1995). So ‘forward” here means from each birth year between 1911 and 1930, up to 1944.

The researchers found that 42 men had CHD, a prevalence of 14 per cent, (42/290) x 100.
But weight at birth was not influential on adult CHD. However, men who weighed 18 1bs (8.2kg)
or less, at one year, had almost twice the risk of CHD as men who weighed more than 18 Ibs.
This of course is only the sample evidence. Whether this finding applies to the population of
all men born in Hertfordshire during this period, or today, or indeed in the UK, depends on
how representative this sample is of either of these populations.

Table 6.1 shows this cohort study expressed as a contingency table (see Chapter 2). The
subjects are grouped according to their exposure or non-exposure to the risk factor (in this
case weighing 18 Ibs or less at one year is taken to be the risk factor), and these groups form
the columns of the table. The rows identify the presence or otherwise of the outcome, CHD.
Clearly this design does suggest (but certainly does not prove) a cause and effect — low weight
at one year seems to lead to coronary heart disease in adult life. Cohort studies suffer a number
of drawbacks, among which are the following:

o Selection of appropriate subjects may cause difficulties. If subjects are chosen using a contact
sample, for example attendees at a clinic, then the outcomes for these individuals may be
different from those in the general population.

e [f the condition is rare in the population, i.e. has low prevalence, it may require a very large
cohort to capture enough cases to make the exercise worthwhile.

® The subjects will have to be followed-up for a long time, possibly many years, before any
worthwhile results are obtained. This can be expensive as well as frustrating, and not good if
a quick answer is needed. Moreover, this long time-period allows for considerable losses, as
subjects drop out for a variety of reasons - they move away, they die from other non-related
causes, and so on.

® Over a long period a significant proportion of the subjects may change their habits, quit
smoking, for example, or take up regular exercise. However, this problem can be monitored
with frequent checks of the state of the cohort.

Table 6.1 The cohort study of weight at one year and its
effect on the presence of coronary heart disease (CHD) in adult
life, expressed in the form of a contingency table

Group by exposure
to risk factor — weighed
< 18 Ibs at 1 year

Yes No Totals
Has CHD Yes 4 38 42
No 11 237 248

Totals 15 275 290
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Finally, note again that the selection of the groups in the cohort contingency table is based on
whether individuals have or have not been exposed to the risk factor, for example weighing 18 lbs
or less at one year (or smoking, or exposure to asbestos, or whatever).

Back to the future — case-control studies

A number of the limitations of the cohort design are addressed by the case-control design,
although it is itself far from perfect, as you will see. In a cohort study, a group of subjects
is followed up to see if they develop an outcome (a condition) of interest. In contrast, in a
case-control study the groups are selected on the basis of having or not having the outcome
or condition. The objective is the same in both types of study — can the outcome of interest
be related to the candidate risk factor? The structure of a case-control study (also known as a
longitudinal or retrospective study) is as follows:

® Two groups of subjects are selected on the basis of whether they have or do not have some
condition of interest (for example, sudden infant death, or stroke, or depression, etc.).

® One group, the cases, will have the condition of interest.

® The other group, the controls, will not have the condition, but will be as similar to the cases
as possible in all other ways.

® Individuals in both groups are then questioned about past exposure to possible risk factors.

® Areasoned conclusion is then drawn about the relationship between the condition in question
and exposure to the suspected risk factor.
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It was the outcome from such a case-control study by Doll and Hill that led them to conduct
the later cohort study referred to above. Before I discuss the case-control design in more detail,
there are a couple of important ideas to be dealt with first.

Confounding

Why do we want to ensure that the cases and controls are broadly similar (on age and sex, if
nothing else). The reason is that it would be very difficult to identify smoking, say, as a risk
factor for lung cancer in the cases, if these were on average twice as old as the controls. Who is
to say that it is not increased age that causes a corresponding increased risk of lung cancer and
not smoking. Consider the following situation.

Researchers noticed that mothers who smoke more have fewer Down syndrome babies than
mothers who smoke less (or don’t smoke at all) (Chi-Ling et al.1999). So at first glance smoking
less seems to be a risk factor for Down syndrome. It would appear that if a mother wants to
reduce the risk of having a baby with Down syndrome she should smoke a lot! However, the
fact is that younger mothers have fewer Down syndrome babies but smoke more, while older
mothers have more Down syndrome babies but smoke less. Thus the apparent connection
between smoking and Down syndrome babies is a mirage. It disappears when we take age
into account. We say that age is confounding the relationship between smoking and Down
syndrome, i.e. age is a confounder.

To be a confounder, a variable must be associated with both the risk factor (smoking) and the
outcome of interest (Down syndrome). Age satisfies this condition since smoking is connected
with age, and having a Down syndrome baby is also connected with age. Age is commonly
found to be a confounder, as is sex. When we allow for the effects of possible confounders, we
are said to be controlling or adjusting for confounders. Results which are based on unadjusted
data are said to be ‘crude’ results. I'll have more to say about confounding later in the book.

Matching

One way to make cases and controls more similar is to match them. How we match cases
and controls divides case-control studies into two types — the matched and the unmatched
designs. To qualify as a matched case-control each control must be individually matched (or
paired), person-to-person, with a case. If cases and controls are independently selected, or are
only broadly matched (for example, the same broad mix of ages, same proportions of males and
females — known as frequency matching), then this is an unmatched case-control design. Finally,
bear in mind that variables on which the subjects are matched cannot be used to shed any light
on the relationship between outcome and risk. For example, if we are interested in coffee as
one possible risk factor for people with pancreatic cancer (the cases), we should certainly not
match cases and controls so that both groups drink lots of coffee.

Unmatched case-control design — an example from practice
In the following extract, from a frequency-matched case-control study into the possible con-

nection between lifelong exercise and stroke (Shinton and Sagar 1993), the authors describe
the selection of the cases and the controls.
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SUBJECTS

Between 1 October 1989 and 30 September 1990 we recruited men and women who
had just had their first stroke and were aged 35-74. The patients were assessed by
one of us using the standard criteria (for stroke) of the World Health Organisation.

Control subjects were randomly selected from the general practice population to
broadly match the distribution of age and sex among the patients with stroke (fre-
quency matching). All those on the register of the 11 participating practices aged
35-74 were eligible for inclusion. The controls were each sent a letter signed by their
general practitioner, which was followed up by a telephone call or visit to arrange an
appointment for assessment, usually at their practice surgery.

Table 6.2 Outcome from the exercise and stroke unmatched
case-control study for those subjects who had and who had not
exercised between the ages of 15 and 25

Group by disease or condition

Cases (stroke) Controls
Risk factor: exercise Yes 55 130
undertaken when aged 15-25  No 70 68

The researchers came up with 125 cases with stroke and 198 controls, broadly matched by
age and sex. Notice that the numbers of cases and controls need not be the same (and usually
aren’t). All subjects (or their relatives if necessary), were interviewed and asked about their
history of regular vigorous exercise at various times in the past. Table 6.2 shows the results for
those subjects who had, and had not, taken exercise between the ages of 15 and 25.

In contrast to cohort studies, in case-control study tables you group by ‘has outcome (e.g.
disease) or not, for the columns. The rows correspond to whether or not subjects were exposed
to the risk factor. From these results you can calculate (you’ll see how later) that among those
who had had a stroke, the chance that they had exercised in their youth was only about half the
chance that somebody without a stroke had exercised. Notice that Table 6.2 is not a contingency
table since you now have more than one group, the cases and the controls.

Matched case-control studies

With individuals matched person-to person, you have matched or paired data, which means
that the groups of cases and controls are necessarily the same size. Otherwise, the matched
design has the same underlying principle as the unmatched design. With individual matching
the problem of confounding variables is much reduced. However, one practical difficulty is
that it is sometimes quite hard to find a suitable control to match each of the cases on anything
more than age and sex.



COMPARING COHORT AND CASE-CONTROL DESIGNS 83

Comparing cohort and case-control designs

The case-control design has a number of advantages over the cohort study:

e With a cohort study, as you saw above, rare conditions require large samples, but with a
case-control study, the availability of potential cases is much greater and sample size can be
smaller. Cases will often be contact samples, i.e. selected from patients attending particular
clinics.

® Case-control studies are cheaper and easier to conduct.

® Case-control studies give results much more quickly.
But they do have a number of limitations:

® Problems with the selection of suitable control subjects. You want subjects who, apart from
not having the condition in question, are otherwise similar to the cases. But such individuals
are often not easily found.

® Problems with the selection of cases. One problem is that many conditions vary in their type
and nature and it is thus difficult to decide which cases should be included.

® The problem of recall bias. In case-control studies you are asking people to recall events
in their past. Memories are not always reliable. Moreover cases may have a better recall of
relevant past events than controls — over the years their illness may provide more easily
remembered signposts, and they have a better motive for remembering — to get better!

Because of these various difficulties, case-control studies often provide results which seem to
conflict with findings of other apparently similar case-control studies. For reliable conclusions,
cohort studies are generally preferred — but are not always a practical alternative.

Exercise 6.5 (a) What advantages does a case-control study have over a cohort study?
(b) What are the principal shortcomings of a case-control study?

Getting stuck in — experimental studies

We can now turn to designs, where, in contrast to observational studies, the investigators
actively participate in some aspect of the recruitment, treatment or care of the subjects in the
study.
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Clinical trials

Clinical trials are experiments to compare two or more clinical treatments. I use the word
‘treatment’ here, to mean any sort of clinical intervention, from kind words to new drugs.
Many books have been written wholly on clinical trials, and I can only touch briefly upon some
of the more important aspects of this design. Consider the following imaginary scenario. A
new drug, Arabarb, has been developed for treating hypertension. You want to investigate its
efficacy compared to the existing drug of choice. Here’s what you need to do:

® Decide on an outcome measure — diastolic blood pressure seems a good candidate.

® Select a sample of individuals with hypertension. Divide into two groups (we’ll see how
below)

® Ensure that the two groups are as similar as possible. Similar, not only for the obvious
variables, such as sex and age, but similar also for other variables whose existence you're
aware of but can’t easily measure. For example, emotional state of mind, lifestyles, genetic
differences and so on. But also similar in terms of other variables whose existence you are
not even aware of.

® Give one group the new drug, Arabarb. This is the treatment group.

® Give the other group the existing drug. This is the comparison or control group. A control
group is imperative. If you have only one group of people, and you measure their diastolic
blood pressure before and after they get the Arabarb, you cannot conclude that any decrease
in diastolic blood pressure is caused necessarily by the drug. Being in a calm, quiet clinical
setting, or having someone fussing over them, might reduce diastolic blood pressure.

® Group similarity is a possible answer to the confounding problem. If the groups were identical
in every respect, the only difference being that one group got Arabarb, while the other got the
existing drug, then any greater reduction in diastolic blood pressure in the treatment group
is likely to be due to the new drug. We know it can’t be due to the fact that the subjects in
one group were slightly older, or contained more people who lived alone, or had a greater
proportion of males, etc. because we have set out to make the groups identical with respect
to these variables. So how do we do this?

Randomisation

The solution is to allocate subjects to one group or the other, using some random procedure.
We could toss a coin — heads they go to the treatment group, tails to the control group. This
method has the added virtue, not only of making the groups similar, but also of taking the
allocation process out of the hands of the researcher. He or she might unconsciously introduce
selection bias in the allocation, for example by choosing the least well patients for the treatment
group. If the randomisation is successful, and the original sample is large enough, then the two
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groups should be more or less identical, differing only by chance. This design is thus called the
randomised controlled trial (RCT).

Coin tossing is a little impractical of course, and instead a table of random numbers (there’s
one in the Appendix) can be used for the allocation process. Let’s see how we might use this
method to randomly allocate 12 patients.

You decide to allocate a patient to the treatment group (T), if the random number is even,
say, and to the control group (C), if odd. You then need to determine a starting point in the
random number table, maybe by sticking a pin in the table and identifying a start number.
Suppose, to keep things simple, you start at the top of column 1 and go down the column; the
first six rows contain the values: 23157, 05545, 14871, 38976, 97312, 11742. Combining these
three rows gives:

The numbers: 231570554514
The allocations: TCCCCTCCTCCT

This gives you four treatment group subjects and eight control group subjects. This is a problem
because if possible you want your groups to be the same size. You can fix this with block
randomisation.

Block randomisation

Here’s how it works. You decide on a block size, let’s say blocks of four, and write down
all combinations that contain equal numbers of Cs and Ts. Since there are six such possible
combinations, you will have six blocks:

Blockl : CCTT
Block2 : CTCT
Block3 : CTTC
Block4 : TCTC
Block5 : TCCT
Blocké6 : TTCC

With the same random numbers as before, the first number was 2, so the first four subjects are
allocated according to Block 2, i.e. CTCT. The next number was 3, so the next four subjects are
allocated as Block 3, i.e. CTTC. The next number was 1, giving the allocation CCTT, and so on.
Obviously random numbers greater than 6 are ignored. You will end up with the allocation:

CICT CTTC CCIT

which gives equal numbers, six, in both groups.
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Blinding

If atall possible, you don’t want the patients to know whether they are in the treatment group or
the control groups. This is to avoid the possibility of response or placebo bias. If a patient knows,
or thinks they know, that they are getting the active drug, their psychological response to this
knowledge may cause a physical, i.e. a biochemical, response, which conceivably might in turn
affect their diastolic blood pressure. In the Arabarb trial, you could achieve this ‘blinding’ of
the patients to their treatment, for example, by giving them all identical tablets, one containing
the Arabarb, the other a placebo. This blinding is not always possible. For example, you might
be testing out a new walking frame for elderly infirm patients. It will be difficult to disguise this
from the older existing frame with which they are all familiar.

A further desirable precaution is also to blind the investigator to the allocation process. If
the investigator doesn’t know which subject is receiving the drug and which the placebo, their
treatment of the subjects will remain impartial and even-handed. Human nature being what
it is, there may be an unconscious inclination to treat a patient who is known to be in the
treatment group differently to one in the control group. This effect is known as treatment bias,
and can be avoided by blinding the investigator. We can do this by entrusting a disinterested
third party to obtain the random numbers and decide on the allocation rules. Only this person
will know which group any given subject is in, and will not reveal this until after the treatment
is complete and the results collected and analysed.

Assessment bias can also be overcome by blinding the investigator. This applies to where an
assessment of some condition after treatment, is required. For example, in trials of a drug to
control agitation or anxiety, where proper measurement is not possible, then an investigator,
knowing that a patient got the active drug, might then judge a patient’s condition to be more
‘improved’, than would an uninvolved outsider, who should thus be involved in the process.

When both subject and investigator are blinded, we refer to the design as a double-blind
randomised controlled trial — the gold standard among experimental designs. Without blinding
the trial is referred to as being open. Compared to other designs, the RCT gives the most robust
and dependable results.

The design described above, in which two groups receive identical treatment (except for the
difference in drugs) throughout the period of the trial, is known as a parallel design.

The cross-over randomised controlled trial

A variation on the parallel design is the cross-over design, shown schematically in Figure 6.2.
In this design one group gets drug A, say, for some fixed period of time and the second group
get drug B (or placebo). Then, after a wash-out period to prevent drug effect carry-over, the
groups are reversed. The group which got drug A now gets drug B, and vice versa, and for the
same period of time. Which group gets which treatment first is decided randomly.

The advantage of this method is that each subject gets both treatments, and thus acts as his
or her own control. ‘Same-subject’ matching, if you like. As a consequence of the matched-
pair feature, this design requires smaller samples to achieve the same degree of efficiency.
Unfortunately, there are a number of problems with this approach.

® A subject may undergo changes between the first treatment period and the second.
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Figure 6.2 Schematic of a cross-over randomised controlled trial

® The method doesn’t work well if the drug or treatment to be investigated requires a long time
to become effective - for practical reasons cross-over trials are generally of relatively short
duration (one reason is to avoid excessive drop out).

® Despite awash-outinterval, there maystill be a drug carry-over effect. If carry-over is detected
the second half of the trial has to be abandoned.

® The cross-over design is also inappropriate for conditions which can be cured — most of the
subjects in the active drug half of the study might be cured by the end of the first period!

An example from practice

The following extract describes the design of a randomised cross-over trial of regular versus
as-needed salbutamol in asthma control (Chapman et al. 1994).

If inclusion criteria were met at the first clinic visit, patients were enrolled in a
four-week randomised crossover assessment of regular vs. as-needed salbutamol.
Patients took either 2 puffs (200 mg) metered dose salbutamol from a coded inhaler
or matching placebo four times daily for two weeks. On return to the clinic, diary
cards were reviewed and patients assigned to receive the crossover treatment for two
weeks. During both treatment arms patients carried a salbutamol inhaler for relief of
episodic asthma symptoms. Thus, the placebo treatment arm constituted as-needed
salbutamol.

Patients were instructed to record their peak expiratory flow rate (PEFR) twice daily:
in the early morning and late at night, before inhaler use. Patients also recorded in
a diary the number of daytime and night-time asthma episodes suffered and the
number of as-needed salbutamol puffs used for symptom relief.

Data from the last eight days of each treatment period were analysed; the first six acted as
an active run-in or washout period. Two investigators, blinded to the treatment assignment,
examined these comparisons for each patient, and categorised each patient as: showing no dif-
ference in asthma control between treatment periods; greater control during the first treatment
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period; greater control during the second treatment period; or differences between treatment
periods that did not indicate control to be clearly better during either.

Selection of subjects

Just a brief word about selecting subjects for the RCT. Essentially you want a sample of subjects
(and they will usually be patients of some sort), who represent a cohesive and clearly defined
population. Thus you might want to exclude subjects who, although they have the condition
of interest, have a complicated or more advanced form of it, or simultaneously have other
significant illnesses or conditions, or are taking drugs for another condition — indeed anything
which you feel makes them untypical of the population you have in mind. If your sample is not
truly representative of the population you are investigating (a problem known as selection bias),
then any conclusions you arrive at about your target population are unlikely to be at all reliable.

An example from practice

The following extract is from a RCT to compare the efficacy of having midwives solely manage
the care of pregnant Glasgow women, with the more usual arrangements of care being shared
between midwife, hospital doctors, and GPs (Turnbull et al. 1996). Outcomes were the number
of interventions and complications, maternal and fetal outcomes, and maternal satisfaction
with the care received. The first paragraph details the selection criteria, the second and third
paragraphs describe the random allocation and the blinding processes.

Methods

Design and participants

The study was carried out at Glasgow Royal Maternity Hospital, a major urban
teaching hospital with around 5000 deliveries per year, serving alargely disadvantaged
community. Between Jan 11, 1993, and Feb 25, 1994, all women booking for routine
care at hospital-based consultant clinics were screened for eligibility; the criteria were
residence within the hospital’s catchment area, booking for antenatal care within 16
completed weeks of pregnancy, and absence of medical or obstetric complications
(based on criteria developed by members of the clinical midwifery management team
in consultation with obstetricians; available from the MDU).

The women were randomly assigned equally between the two types of care without
stratification. A restricted randomisation scheme (random permutated blocks of ten)
by random number tables was prepared for each clinic by a clerical officer who was
not involved in determining eligibility, administering care, or assessing outcome. The
research team telephoned a clerical officer in a separate office for care allocation for
each woman.

Women in the control group had no identifying mark on their records, and clinical
staff were unaware whether a particular woman was in the control group or was not
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in the study. We decided not to identify control women. . .because of concern that the
identification of the control group would prompt clinical staff to treat these women
differently (i.e., the Hawthorne effect).

Intention-to-treat

One problem that often arises in an RCT, after the randomisation process has taken place, is
the loss of subjects, principally through drop-out (moving away, refusing further treatment,
dying from non-related causes, etc.), and withdrawal for clinical reasons (perhaps they cannot
tolerate the treatment). Unfortunately, such losses may adversely affect the balance of the two
groups achieved through randomisation. In these circumstances it is good practice to analyse
the data as if the lost subjects were still in the study, as you originally intended — even if
all of their measurements are not complete. This is known as intention-to-treat analysis. It
does, however, require that you have information on the outcome variable for all participants
who were originally randomised, even if they didn’t complete the course of treatment in the
trial. Unfortunately this information is not always available, and in many studies therefore
intention—to-treat may be more an aspiration than a reality.

Exercise 6.6 Explain how the possibility of treatment and assessment bias, and response
bias, is overcome in the design of a RCT.

Exercise 6.7 (a) What is the principle purpose of randomisation in clinical trials? (b)
Using block randomisation, with blocks of four, and a random number table, allocate 40
subjects into two groups, each with 20 individuals.

Exercise 6.8 The following paragraphs contain the stated objective or hypothesis (the
wording might have been changed slightly in some cases), in each of a number of recently
published clinical research papers. In each case: (a) suggest a suitable outcome variable;
(b) suggest an appropriate study design or designs (there’s usually more than one way to
skin a cat), which would enable the investigators to achieve their stated objective(s); (c)
identify possible confounders (if appropriate); (d) comment on the appropriateness of
the designs and methods actually chosen by the researchers.

(a) To determine whether a child’s tendency to atopic diseases (asthma, hay fever, eczema,
etc.), is affected by the number of siblings that child has.

(b) To compare two drugs, ciprofoloxacin (CF) and pivmecillinam (PM), for the treatment of
childhood shigellosis (dysentery).

(c) To study the effect of maternal chronic hypertension on the risk of small-for-gestational
age birthweight.

(d) To evaluate a possible association between maternal smoking and the birth of a Down
syndrome child.
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(e) To compare a community-based service (patients living and treated at home), with a
hospital-based service (patients admitted to and treated in hospital), for patients with
acute, severe psychiatric illness, with reference to psychiatric outcomes, the burden on
relatives and relatives’ satisfaction with the service.

(f) To compare regular with as-needed inhaled salbutamol in asthma control.
(g) To evaluate the impact of counselling on: client symptomatology, self-esteem and quality

of life; drug prescribing; referrals to other mental health professionals; and client and GP
satisfaction.
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From samples to populations -
making inferences

Learning objectives

When you have finished this chapter you should be able to:

e Show that you understand the difference, and the connection, between a population
parameter and a sample statistic.

e Explain what statistical inference is.

e Explain what an estimate is and why this is unlikely to be exactly the same as the
population parameter being estimated.

Statistical inference

You saw in the previous chapter, that when we want to discover things that interest us about a
population, we take a sample. We then hope to generalise our sample findings, first to the study
population and ultimately to the target population. Statisticians call this process, of generalising
from a sample to a population, statistical inference or inferential statistics.

To take an example (Grun et al. 1997): researchers were interested in comparing two methods
of screening for genital chlamydia in women attending general practice. Their target population
was, ‘all asymptomatic women attending general practice’! Their study population was four

1 They don’t say whether this is all such women in London, or England, or Wales, or the UK!

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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TARGET POPULATION

All asymptotic women SAMPLE
aged 18-35 attending 8960 women aged n=765;
. 18-35 in four general o/ i
general practice; ractices in Camden 2.6 % with
about 2.6 % with p genital

and Islington;
about 2.6 % with
genital chlamydia?

genital chlamydia?? chlamydia

Figure 7.1 The process of statistical inference - from sample to population

general practices in the London Boroughs of Camden and Islington, with a total of 37 000
patients. All women aged between 18 and 35 were invited to take part in the study. A total study
population of 3960 women were eligible for inclusion. After exclusions for various reasons, a
total sample of 765 women were finally included. As well as the results of their cervical smear for
genital chlamydia, data from a brief questionnaire on demographic details, history of urogenital
problems and information on sexual history, was also included in the sample data.

The prevalence of genital chlamydia in the sample was found to be 2.6 per cent. The authors
might then have inferred from this sample result that the prevalence of genital chlamydia in
the study population of 3960 women in the four practices, was also about 2.6 per cent. And by
extension, was also true of the target population of all asymptotic women attending general
practice.

The accuracy of this estimate would depend on how typical the 765 women in the sample
were of all the 3960 women in the study population, and in turn how typical these women were
of all the women in the target population — all women 18-35 in the UK attending GP practice.
This particular statistical inference process is illustrated in Figure 7.1.

I have used the word ‘estimate’ % here deliberately, because the value you get from your
sample (from any sample) is never going to be exactly the same as the population value. You
have to accept that the percentage with genital chlamydia in the population is probably around
2.6 per cent, give or take a bit. The size of the ‘bit’ depends on how similar your sample is to its
population — and on sampling error. I'll have a lot more to say on this later in the book.

For the moment, the meaning of a few terms. The feature or characteristic of a population
whose value you want to determine is known as a population parameter. For example, the
mean or the median of some variable in a population are both population parameters. In the
genital chlamydia example, the population parameter you want to estimate is the percentage
with genital chlamydia.

The value that you get from your sample, in this case the sample percentage with genital
chlamydia (on which you are going to base your estimate of the population value) is called the
sample statistic. This is why we are so interested in the summary descriptive measures, such
as the sample mean and the sample median, described in Chapter 6. In other words, you can
use the sample mean, for example, to estimate the population mean, the sample median to
estimate the population median and so on.

2 An estimate is just a fancy word for an informed guess.
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Actually, estimation is not the only way of making inferences about population parameter
values. An alternative approach is to hypothesise that a population parameter has a particular
value, and then see if the value of the corresponding sample statistic is compatible with your
hypothesis. This approach is called hypothesis testing. In Chapters 9 to 11, I am going to discuss
some common estimation procedures and in Chapters 12 to 14, I will discuss the alternative
hypothesis test approach. First, however, I need to say a few words on probability, and some
other related stuff; this I will do in the next chapter.

Exercise 7.1 (a) Explain the meaning of and the difference between a population pa-
rameter and a sample statistic. (b) Why is a sample, however well chosen, never going to
be exactly representative of the sampled population? (c) Give a couple of examples that
illustrate the difference between a target and a study population?

Exercise 7.2 Give a few reasons why women aged 18-35 in the London boroughs of
Camden and Islington may not be typical of all women in London, or of all women in the
UK.
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Probability, risk and odds

Learning objectives

When you have finished this chapter you should be able to:
e Define probability, explain what an event is and calculate simple probabilities.
e Explain the proportional frequency approach to calculating probability.

e Explain how probability can be used with the area properties of the Normal distribu-
tion.

e Define and explain the idea of risk and its relationship with probability.

e (alculate the risk of some outcome from a contingency table and interpret the result.
e Define and explain the idea of odds.

e (alculate odds from a case-control 2 x 2 table and interpret the result.

e State the equation linking probability and odds and be able to calculate one given
the other.

e Explain what the risk ratio of some outcome is, calculate a risk ratio and interpret the
result.

e Explain what the odds ratio for some outcome is, calculate an odds ratio and interpret
the result.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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e Explain why it's not possible to calculate a risk ratio in a case-control study.

e Define number needed to treat, explain its use and calculate NNT in a simple example.

Chance would be a fine thing - the idea of probability

Probability is a measure of the chance of getting some outcome of interest from some event.
The event might be rolling a dice and the outcome of interest might be getting a six; or the
event might be performing a biopsy with the outcome of interest being evidence of malignancy
and so on. Some basic ideas about probability:

The probability of a particular outcome from an event will lie between zero and one.

® The probability of an event that is certain to happen is equal to one. For example, the
probability that everybody dies eventually.

® The probability of an event that is impossible is zero. For example, throwing a seven with a
normal dice.

e If an event has as much chance of happening as of not happening (like tossing a coin and
getting a head), then it has a probability of '/, or 0.5.

e [f the probability of an event happening is p, then the probability of the event not happening
is1—p.
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Table 8.1 Frequency table showing causes of blunt injury to
limbs in 75 patients

Frequency (number of Proportional
Cause of injury patients) n =75 frequency 46/75 =
Falls 46 0.613 0.613
Crush 20 0.267
Motor vehicle crash 6 0.080
Other 3 0.040

Calculating probability

You can calculate the probability of a particular outcome from an event with the following
expression:

The probability of a particular outcome from an event is equal to the number of outcomes
that favour that event, divided by the fotal number of possible outcomes.

To take a simple example: What is the probability of getting an even number when you roll a
dice?

Total number of possible outcomes =6 (1 or 2 or 3 or 4 or 5 or 6)
Total number of outcomes favouring the event ‘an even number’ = 3 (i.e. 2 or 4 or 6)
So probability of getting an even number = 3/6 = 1,=0.5

The above method for determining probability works well with experiments where all of the
outcomes have the same probability, e.g. rolling dice, tossing a coin, etc. In the real world you
will often have to use what is called the proportional frequency approach, which uses existing
frequency data as the basis for probability calculations.

As an example, look at Table 8.1 (which is Table 2.3 reproduced for convenience) which
shows the causes of blunt injury to limbs. I have added an extra column showing the propor-
tional frequency (category frequency divided by total frequency). Notice that the proportional
frequencies sum to one.

Exercise8.1 Table 1.6 shows the basic characteristics of the two groups of women receiv-
ing a breast lump diagnosis in the stress and breast cancer study. What is the probability
thata woman chosen at random: (a) will have had her breast lump diagnosed as (i) benign?
(ii) malignant?; (b) will be post-menopausal?; (c) will have had three or more children?

Exercise 8.2 Table 1.7 is from a study of thrombotic risk during pregnancy. What is the
probability (under classification 1) that a subject chosen at random will be aged: (a) less
than 30?; (b) more than 29?
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Now ask the question, ‘What is the probability that if you chose one of these 75 patients at
random their injury will have been caused by a fall?’. The answer is the proportional frequency
for the ‘fall’ category, i.e. 0.613. In other words, we can interpret proportions as equivalent
to probabilities. Probability is a huge subject with many textbooks devoted to it, but for our
purposes in this book we don’t really need to know any more.

Probability and the Normal distribution

We know that if data is Normally distributed then about 95 per cent of the values will lie no
further than two standard deviations from the mean (see Figure 5.5). In probability terms,
we can say that there is a probability of 0.95 that a single value chosen at random will lie no
further than two standard deviations from the mean. In the case of the Normally distributed
birthweight data, this means that there is a probability of 0.95 that the birthweight of one of
these infants chosen at random will be between 2890 g and 4398 g.

Exercise 8.3 Using the information on cord platelet count in Figure 4.6, determine the
probability that one infant chosen at random from this sample will have a cord platelet
count: (a) between 101 x 10%/1and 515 x 10°/1; (b) less than 239 x 10°/L.

Risk

As I mentioned earlier a risk is the same as a probability, but the former word tends to be
favoured in the clinical arena. So the definition of probability given earlier applies equally here
to risk. In other words, the risk of any particular outcome from an event is equal to the number
of favourable outcomes divided by the total number of outcomes. Risk accordingly can vary
between zero and one.

As an example, and also to re-visit the contingency table, look again at the table in Table 6.1
from the cohort study of coronary heart disease (CHD) in adult life and the risk factor ‘weighing
18 Ibs or less at one year’. The risk (or probability) that those adults who as infants weighed
18 Ibs or less at one year will have CHD, is equal to the number who weighed 18 Ibs or less at
one year and had CHD, divided by the total number who weighed 18 Ibs or less. This is equal
to 4/15 = 0.2667.

Similarly, the risk (or probability) for those who weighed more than 18 Ibs at one year will
have CHD equals the number who weighed more than 18 1bs at one year and had CHD, divided
by the total number who weighed more than 18 Ibs. This is equal to 38/275 = 0.1382 and thus
is only half the risk of those weighing 18 lbs or less.

The risk for a single group, as it is described it above, is also known as the absolute risk,
mainly to distinguish it from relative risk, which is the risk for one group compared to the risk
for some other group (which we’ll come to shortly).
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Table 8.2 The distribution of alcohol intake and deaths by sex and level of alcohol intake.
Reproduced from BMJ, 308, 302-6, courtesy of BMJ Publishing Group

Men Women
Alcohol intake No of No (%) No of No (%)
(beverages a week)* subjects of deaths subjects of deaths
<1 625 195 (31.2) 2472 394 (15.9)
1-6 1183 252 (21.3) 3079 283(9.2)
7-13 1825 383 (21.0) 1019 96 (9.4)
14-27 1234 285 (23.1) 543 46 (8.5)
28—41 585 118 (20.2) 72 6(8.3)
42-69 388 99 (25.5) 29 5(17.2)
> 69 211 66 (31.3) 20 1(5.0)
Total 6051 1398 (23.1) 7234 831 (11.5)

*One beverage contains 9-13 g alcohol.

Exercise 8.4 Table 8.2 is from a cohort study into the influence of sex, age, body mass
index and smoking on alcohol intake and mortality in Danish men and women aged
between 30 and 79 years (Gronbaek et al. 1994). The table shows the distribution of
alcohol intake and deaths by sex and level of alcohol intake. Use the information in the
table to construct an appropriate contingency table for: (a) men; (b) women. Calculate
the absolute risk of death among those subjects who consume: (i) less than one beverage
a week; (ii) more than 69 beverages a week. Interpret your results.

0dds

The odds for a particular outcome from an event is closely related to probability, is perhaps a
more difficult concept, but important in medical statistics, and we will meet it again later in
the book. As you saw above, the probability (or risk) of a particular outcome from an event
is the number of outcomes favourable to the event divided by the fotal number of outcomes.
But:

The odds for an event is equal to the number of outcomes favourable to the event divided
by the number of outcomes not favourable to the event.

Notice that:
® The value of the odds for an outcome can vary from zero to infinity.

® When the odds for an outcome are less than one, the odds are unfavourable to the outcome;
the outcome is less likely to happen than it is to happen.

® When the odds are equal to one, the outcome is as likely to happen as not.
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® When the odds are greater than one, the odds are favourable to the outcome; the outcome is
more likely to happen than not.

Let’s go back to the dice rolling game. The odds in favour of the outcome ‘an even number’,
is the number of outcomes favourable to the event (the number of even numbers, i.e. 2, 4,
6), divided by the number of outcomes not favourable to the event (the number of not even
numbers, i.e. 1, 3, 5), which is 3/3 = 1/1 or one to one.

So the odds of getting an even number are the same as the odds of getting an odd number.
Nearly all the odds in health statistics are expressed as ‘something’ to one. We call this value of
one the reference value.

As a further more relevant example, we can also calculate odds from a table such as that for
the exercise and stroke case-control study in Table 6.2. For instance:

® Among those patients who'd had a stroke, 55 had exercised (been exposed to the ‘risk’ of
exercising) and 70 had not, so the odds that those with a stroke had exercised is 55/70 =
0.7857.

® Among those patients who hadn’t had a stroke, 130 had exercised and 68 had not, so the
odds that they had exercised is 130/68 = 1.9118.

In other words, among those who'd had a stroke, the odds that they had exercised was less
than half the odds (0.7857/1.9118) of those who hadn’t had a stroke. We can conclude on the
basis of this sample that exercise when young seems to confer protection against a stroke.

Exercise 8.5 Table 8.3 is from a matched case-control study into maternal smoking
during pregnancy and Down syndrome (Chi-Ling et al. 1999). It shows the basic char-
acteristics of mothers giving birth to babies with Down syndrome (cases), and without
Down syndrome (controls). Use the information in the table to construct appropriate
separate 2 x 2 contingency tables for women: (a) aged under 35; (b) aged 35 and over.
Hence calculate the odds that they had smoked during pregnancy among mothers giving
birth to: (i) a Down syndrome babys; (ii) a healthy baby. What do you conclude?

Why you can’t calculate risk in a case-control study

For most people the risk of an event, being akin to probability, makes more sense and is easier
to interpret than the odds for that same event. That being so, maybe it would be more helpful
to express the stroke/exercise result as a risk rather than as odds. Unfortunately we can’t, and
here’s why.

To calculate the risk that those with a stroke had exercised, you need to know two things: the
total number who'd had a stroke, and the number of these who had been exposed to the risk
(of exercise). You then divide the latter by the former. In a cohort study you would select the
groups on this basis — whether they had been exposed to the risk (of exercising) or not. So one
group would contain individuals exposed to the risk and the other those not exposed.
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Table 8.3 Basic characteristics of mothers in a case-control study of maternal
smoking and Down syndrome. Reproduced from Amer. J. Epid., 149, 442-6, courtesy of
Oxford University Press

Selected characteristics of Down syndrome cases and birth-matched controls. Washington
State, 1984-1994

Cases (n=1775) Controls (n=7750)
No. % No. %
Smoking during pregnancy
Age < 35 years
Yes 112 20.0 1411 20.2
No 421 75.0 5214 74.6
Unknown 28 5.0 363 5.2
Aged > 35 years
Yes 15 7.0 108 14.2
No 186 86.9 611 80.2
Unknown 13 6.1 43 5.6

But in a case-control study you don’t select on the basis of whether people have been ex-
posed to the risk or not, but on the basis of whether they have some condition (a stroke) or
not. So you have one group composed of individuals who have had a stroke, and one group
who haven’t, but both groups will contain individuals who were and were not exposed to
the risk (of exercising). Moreover, you can select whatever number of cases and controls you
want. You could for example halve the number of cases and double the number of controls.
This means the column totals, which you would otherwise need for your risk calculation, are
meaningless.

The link between probability and odds

The connection between probability (risk) and odds means that it is possible to derive one
from another:

risk or probability = odds/(1 4 odds)

odds = probability/(1 — probability)

Exercise 8.6 Following on from Exercise 8.5, what is the probability that a mother
chosen at random from those aged > 35, will have smoked during pregnancy if they are:
(a) mothers of Down syndrome babies; (b) mothers of healthy babies?
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Table 8.4 Generalised contingency table for risk ratio calculations in a cohort study

Group by exposed to risk factor

Yes No Totals
Outcome: has disease Yes a b (a+b)
No c d (c+4d)

Totals (a+c¢) (b+d)

The risk ratio

In practice, risks and odds for a single group are not nearly as interesting as a comparison of
risks and odds between two groups. For risk you can make these comparisons by dividing the
risk for one group (usually the group exposed to the risk factor) by the risk for the second,
non-exposed, group. This gives us the risk ratio.! Let’s calculate the risk ratio for the data in
Table 6.1, from the cohort study of coronary heart disease (CHD) in adult life and weighing 18
Ibs or less at one year, using the results obtained on page 100:

Among those weighing 18 Ibs or less at one year, the risk of CHD = 0.2667

Among those weighing more than 18 Ibs at one year, the risk of CHD = 0.1382

So the risk ratio for CHD among those weighing 18 lbs or less at one year compared to those
weighing more than 18 Ibs = 0.2667/0.1382 = 1.9298. We interpret this result as follows: adults
who weighed 18 lbs or less at one year old have nearly twice the risk of CHD as those who
weighed more than 18 Ibs.

We can generalise the risk ratio calculation with the help of the contingency table as in Table
8.4, where the cell values are represented as a, b, cand d.

® Among those exposed to the risk factor, the risk of disease = a/(a + ).
® Among those not exposed, the risk of disease = b/(b + d).

® Therefore : risk ratio =

(b+d) — bla+c)

a / b _a(b+d)
(a+c)

Exercise 8.7 Use the results you obtained in Exercise 8.4 to calculate the risk ratio of
death for those who consumed more than 69 beverages a week, compared to those who
consumed less than one beverage per week (which we’ll define as the reference group),
for: (a) men; (b) women. Interpret your results.

! Risk ratio is also commonly known as relative risk.
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Table 8.5 Generalised 2 x 2 table for odds ratio calculations in a
case-control study

Group by outcome (e.g. disease)

Cases Controls
Exposed to risk factor? Yes a b
No c d

The odds ratio

With a case-control study you can compare the odds that those with a disease will have been
exposed to the risk factor, with the odds that those who don’t have the disease will have been
exposed. If you divide the former by the latter you get the odds ratio.

On p. 102 you calculated the following odds for the stroke and exercise study (where we are
treating exercise as the risk factor): the odds that those with a stroke had exercised = 55/70
= 0.7857; and the odds that those without a stroke had exercised = 130/68 = 1.9118. Diving
the former by the latter, you get the odds ratio = 0.7857/1.9118 = 0.4110. This result suggests
that those with a stroke are less than half as likely to have exercised when young as the healthy
controls. It would seem that exercise is a beneficial ‘risk’ factor. We can generalise the odds ratio
calculation with the help of the 2 x 2 table in Table 8.5.

® The odds of exposure to the risk factor among those with the disease = a/c,
® The odds of exposure to the risk factor among the healthy controls = b/d.

® Therefore: odds ratio = ZT/; = ad/bc.

Exercise 8.8 Use the results from Exercise 8.5 to calculate the odds ratio for smoking
among the mothers of Down syndrome babies compared to mothers of healthy babies,
for: (a) mothers aged under 35; (b) mothers aged 35 and over. Interpret your results.

Remember that the risk ratios and odds ratios in the coronary heart disease and in the stroke
examples above are sample risk and odds ratios. For instance, from the sample risk ratio of
1.928 in the CHD/weight at one year study, you can infer that the population risk ratio is also
about 1.93 + a ‘bit. But how big is this ‘bit, how precise is your estimate? This is a question I'll
address in Chapter 11.

Finally, I mentioned earlier that most people are happier with the concept of risk’ than
with ‘odds) but that you can’t calculate risk in a case-control study. However, there is a
happy ending. The odds ratio in a case-control study is a reasonably good estimator of the
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equivalent risk ratio, so you can at least approximate its value with the corresponding odds
ratio.

Number needed to treat (NNT)

This seems as good a time as any to discuss a measure of the effectiveness of a clinical procedure
which is related to risk; more precisely, to absolute risk. This is the number needed to treat, or
NNT. NNT is the number of patients who would need to be treated with the active procedure,
rather than a placebo (or alternative procedure), in order to reduce by one the number of
patients experiencing the condition.

To explain NNT let’s go back to the example for weighing 18 Ibs or less at one year as a risk
factor for coronary heart disease (CHD). The absolute risk of CHD among those weighing
18 Ibs or less was 0.2667. The absolute risk of CHD for those weighing more than 18 Ibs was
0.1382.

We need now to define the absolute risk reduction or ARR as the difference between two
absolute risks. So in this example, the absolute risk reduction is the difference in these two
absolute risks — the reduction in risk gained by weighing more than 18 lbs at one year rather
than weighing 18 Ibs or less. In this case:

ARR = 0.2667 — 0.1382 = 0.1285

Now the number needed to treat is defined as follows: NNT = 1/ARR

Thus in this case: NNT = 1/0.1285 = 7.78

In other words, if you had some treatment (infant-care advice for vulnerable parents, for
example), which would cause infants who would otherwise have weighed less than 18 Ibs at
one year to weigh 18 Ibs or more, then you would need to ‘treat’” eight infants (or their parents)
to ensure that one of these infants did not develop coronary heart disease when an adult.?
NNT is often used to give a familiar and practical meaning to outcomes from clinical trials and
systematic reviews,> where measures of risk, and risk ratios, may be difficult to translate into
the potential benefit to patients.

An example from practice

Table 8.6 is from the follow-up (cohort) study into the effectiveness of carotid endarterectomy
in ipsilateral stroke prevention first referred to in Figure 3.2 (Inzitari et al. 2000). The table
shows that for any stroke, the (absolute) risk if treated medically is 0.110 (11.0 per cent), and if
treated surgically is 0.051 (5.1 per cent). The reduction in absolute risk, ARR = 0.110 - 0.051 =
0.059 (5.9 per cent). So NNT = 1/0.059 = 16.95 or 17, at five years. In other words, 17 patients
would have to be treated with carotid endarterectomy to prevent one patient from having a
stroke within five years who, without the treatment, would otherwise have done so.

2 The number must always be rounded up.
3 Systematic review is the systematic collection of all the results from as many similarly-designed studies as
possible dealing with the same clinical problem. I discuss this procedure in Chapter 20.
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Table 8.6 Example of numbers needed to treat (NNT), at five years and two years from a
follow-up (cohort) study into the effectiveness of carotid endarterectomy in stroke prevention.
Reproduced from NEJM, 342, 1693-9, by permission of Massachusetts Medical Society

Absolute
Medically Surgically ~ Reduction Difference  No. Needed
Cause Treated Group Treated Group  in Risk in Risk to Treat”
at5yr at2yr
Any stroke’ 11.0 5.1 54 5.9 17 67
Large-artery stroke* 6.6 3.1 54 3.5 29 111

*The number needed to treat is calculated as the reciprocal of the difference in risk. At two years, the number needed
to treat is based on estimated differences in risk of 1.5 percent for stroke of any cause and 0.9 percent for large-artery
stroke.

TThe risk of stroke from any cause in the medical and surgical groups in the Asymptomatic Carotid Atherosclerosis
Study is shown.

#The estimates of the risk of large-artery stroke were based on the observations that for subjects in the NASCET with
60 to 99 percent stenosis, the ratio of the risk of large-artery stroke to the risk of stroke from any cause in the territory
of a symptomatic artery was similar in the medically and surgically treated subjects, and the risk of large-artery stroke
was approximately 60 percent of the risk of stroke from any cause in the territory of an asymptomatic artery (i.e., 6.6
percent = 60 percent of 11.0 percent, and 3.1 percent = 60 percent of 5.1 percent).

Exercise 8.9 In a cohort study of a possible connection between dental disease and
coronary heart disease (CHD), subjects were tracked for 14 years (deStefano et al.). Of
3542 subjects with no dental disease, 92 died from CHD, while of 1786 subjects with
periodontitis, 151 died from CHD. How many people must be successfully treated for
periodontitis to prevent one person dying from CHD?







V

The Informed Guess -
Confidence Interval Estimation







9

Estimating the value of a single
population parameter - the idea
of confidence intervals

Learning objectives

When you have finished this chapter you should be able to:

® Describe the sampling distribution of the sample mean and the characteristics of its
distribution.

Explain what the standard error of the sample mean is and calculate its value.

Explain how you can use the probability properties of the Normal distribution to
measure the preciseness of the sample mean as an estimator of the population mean.

e Derive an expression for the confidence interval of the population mean.

Calculate and interpret a 95 per cent confidence interval for a population mean.

Calculate and interpret a 95 per cent confidence interval for a population proportion.

Explain and interpret a 95 per cent confidence interval for a population median.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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Confidence interval estimation for a population mean

You saw at the beginning of Chapter 6 that we can use a sample statistic to make an informed
guess, or estimate, of the value of the corresponding population parameter. For example, the
sample mean birthweight for the 30 infants in Table 2.5 was 3644.4 g, so you can estimate the
population mean birthweight of all infants of whom this sample is representative, also to be
about 3644 g,! plus or minus some (hopefully) small random or sampling error. The obvious
questions are:

® How small is this ‘plus or minus’ bit?
® Can it be quantified?

® Can we establish how precise our sample mean birthweight is as an estimate of population
mean birthweight?

® How close to a population mean can you expect any given sample mean to be?

As you can see these are all essentially the same question, ‘How big an error might we be
making when we use the sample mean as an estimate of the population mean?’. This question
can be answered with what is known as a confidence interval estimator, which is a numeric
expression that quantifies the likely size of the sampling error. But to get a confidence interval
we need first to introduce an important concept in statistical inference — the standard error.

The standard error of the mean

Our sample of 30 infants produced a sample mean birthweight of 3644.4 g. You could take
a second, different, sample of 30 infants from the same population, and this sample would
produce a different value for the sample mean. And a third sample, and a fourth and so on.
In fact from any realistic population you could (in theory), take a huge number of different
same-size samples, each of which would produce a different sample mean. You would end up
with a large number of sample means, and if you were to arrange all of these sample means
into a frequency curve, you would find:

e That it was Normal. This Normal-ness of the distribution of sample means is a very useful
quality (to say the least); we will depend on it a lot in what is to come.

e That it was centred around the true population mean. In other words, the mean of all possible
sample means is the same as the population mean.

This is very re-assuring. It means that, on average, the sample mean estimates the population
mean exactly. But note the ‘on average’. A particular single sample mean may still be some
distance from the true mean.

! The value of the sample mean of 3644.4g is known as the point estimate of the population mean. It’s the single
best guess you could make as to the value of the population mean.
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We can measure the spread of all of these different sample means in the usual way - with the
standard deviation. However, to distinguish it from the spread of values in a single sample, we
call it the standard error.? It is usually abbreviated as s.e.(x), where the symbol x stands for the
sample mean. Remember that the standard deviation is a measure of the spread of the data in
a single sample. The standard error is a measure of the spread in all (same-size) sample means
from a population.

We can very easily estimate the standard error with the equation: s.e.(x) = s//n. Here sis the
sample standard deviation and # is the sample size. Notice that as the sample size n increases,
the standard error decreases. In other words, the bigger the sample, the smaller the error in our
estimate of population mean. Intuitively this feels right.

For example, if we took a sample of size n = 100 from a population, and measured systolic
blood pressure, and obtained a sample mean of 135 mmHg and a sample standard deviation
of 3 mmHg, then the estimated standard error would be:

s.e.(X) =3/4/100 = 3/10 = 0.33 mmHg

Since the distribution of sample means is Normal, we can make use of the area properties of the
Normal distribution (see Figure 5.5). If the sample standard deviation is 3 mmHg and sample
size n =100, then the standard error = 0.33 mmHg. Because the distribution of sample means
is Normal, this means that about 95 per cent of sample means will lie within plus or minus
two standard errors of the population mean. That is within plus or minus 0.66 mmHg of the
population mean. In other words there’s a pretty good chance (a probability of 0.95 in fact) that
any single sample mean will be no further than 0.66 mmHg from the (unknown) population
mean.

The above discussion about taking lots of different samples from a population is entirely
theoretical. In practice, you will usually only get to take one sample from a population, the
value of whose mean you will never know. To sum up, the standard error is a measure of the
preciseness of the sample mean as an estimator of the population mean. Smaller is better. If
you are comparing the precision of two different sample means as estimates of a population
mean, the sample mean with the smallest standard error is likely to be the more precise.

Exercise 9.1 A team of researchers used a cohort study to investigate the intake of
vitamins E and C and the risk of lung cancer, 19 years into the study (Yong et al. 1997). They
calculated the mean (and the standard error) intake of vitamins E and C, of individuals
with and without lung cancer (cases and non-cases respectively). These were:

Vitamin E.  Cases: 6.03 mg (0.35 mg); non-cases: 6.30 mg (0.05 mg).
Vitamin C.  Cases: 64.18 mg (5.06 mg); non-cases: 82.21 mg (0.80 mg).

How would you interpret these results in terms of the likely precision of each of the sample
means as estimators of their respective population means?

2To give it its full name, the standard error of the sampling distribution of the sample mean (quite a mouthful),
but thankfully, it is usually just called the standard error.
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How we use the standard error of the mean to calculate a confidence
interval for a population mean

With the standard error under our belt we can now get to grips with the confidence interval.
You have seen that we can be 95 per cent confident that any sample mean is going to be
within plus or minus two standard errors of the population mean.® From this we can show
that:

Population mean = sample mean £ 2 x standard error
That is:

® We can be 95 per cent confident that the interval, from the sample mean — 2 x standard
error, to the sample mean + 2 x standard error, will include the population mean.

® Or in probability terms, there is a probability of 0.95 that the interval from the sample mean
—2 x standard error, to the sample mean + 2 x standard error, will contain the population
mean.

In other words, if you pick one out of all the possible sample means at random, there is a
probability of 0.95 that it will lie within two standard errors of the population mean. We call
the distance from the sample mean — 2 X s.e.(X), to the sample mean + 2 X s.e.(X), the
confidence interval.

The above result means that you now quantify just how close a sample mean is likely to be
to the population mean. For obvious reasons the value you get when you put some figures into
this expression is known as the 95 per cent confidence interval estimate of the population mean.
A 95 per cent confidence level is most common, but 99 per cent confidence intervals are also
used on occasion. Note that the confidence interval is sometimes said to represent a plausible
range of values for the population parameter.

A worked example from practice

In the cord-platelet count histogram in Figure 4.6, the mean cord platelet count in a sample of
4382 infants is 306 x 10%/1, and the standard deviation is 69 x 10%/1, so the standard error of the
mean is:

s.e.(X) =69 x 10°/,/4382 = 1.042 x 10°/1

3T have used the value two in all of these expressions as a convenient approximation to the exact value (which
in any case will be very close to two, when the probability is 0.95). The exact value comes from what is known
as the t distribution. The t distribution is similar to the Normal distribution, but for small sample sizes is
slightly wider and flatter. It is used instead of the Normal distribution for reasons connected to inferences
about the population standard deviation, which we don’t need to go into here. Anyway, in practice you will
use a computer to obtain your confidence interval result. This will use the proper value.
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Therefore the 95 per cent confidence interval for the population mean cord platelet count is:
(306 — 2 x 1.042t0 306 + 2 x 1.042) gor (303.916 to 308.084) x 109/1

Which we can interpret as follows: we can be 95 per cent confident that the population mean
cord platelet count is between 303.916x 10°/1 and 308.084 x 10%/1, or alternatively that there’s a
probability of 0.95 that the interval from 303.916 to 308.084 will contain the population mean
value. Of course there’s also a 5 per cent chance (or a 0.05 probability), that it will not!

Alternatively we can say that the interval (303.916 to 308.084) x 10/l represents a plausible
range of values for the population mean cord platelet count. The narrower the confidence
interval the more precise is the estimator. In the cord platelet example, the small width, and
therefore high precision of the confidence interval, is due to the large sample. By the way, it’s
good practice to put the confidence interval in brackets and use the ‘to’ in the middle and not
a ‘— sign, since this may be confusing if the confidence interval has a negative value(s).

Exercise 9.2 Use the summary age measures given in Table 1.6 for the life events and
breast cancer study, to calculate the standard error and the 95 per cent confidence intervals
for population mean age of: (a) the cases; (b) the controls. Interpret your confidence
intervals. What do you make of the fact that the two confidence intervals don’t overlap?

An example from practice

The results in Table 9.1 are from a randomised trial to evaluate the use of an integrated care
scheme for asthma patients, in which care is shared between the GP and a specialist chest
physician (Grampian Asthma Study 1994). The treatment group patients each received this
integrated care, the control group received conventional care from their GP only. The researchers
were interested in the differences between the groups, if any, in a number of outcomes, shown
in the figure (ignore the last column for now). The target population they have in mind is,
perhaps, all asthma patients in the UK.

Table 9.1 Means and 95 per cent confidence intervals for a number of clinical outcomes over
12 months, for asthma patients. The treatment group patients received integrated care, the
control group conventional GP care. Reproduced from BMJ, 308, 559-64, courtesy of BMJ
Publishing Group

Integrated care  Conventional care

Clinical outcome (n>296) (n>277) Ratio of means

No of bronchodilators prescribed 10.1 (9.2to 11.1) 10.6 (9.7to 11.7) 0.95 (0.83 to 1.09)
No of inhaled steroids prescribed 6.4 (5.9106.9) 6.5(6.1to7.1) 0.98 (0.88 to 1.09)
No of courses of oral steroids used 1.6 (1.4t0 1.8) 1.6 (1.4t01.9) 0.97 (0.79 to 1.20)
No of general practice asthma consultations 2.7 (2.4 to 3.1) 2.5(2.2t02.8) 1.11(0.95to 1.31)
No of hospital admissions for asthma 0.15 (0.11 to 0.19) 0.11 (0.08 to 0.15) 1.31 (0.87 to 1.96)

Means and 95% confidence interval are estimated from Poisson regression models after controlling for initial peak
flow, forced expiratory volume (as % of predicted), and duration af asthma.
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You can see that in the integrated care group of 296 subjects, the sample mean number of
bronchodilators prescribed over 12 months was 10.1, with a 95 per cent confidence interval for
the population mean of (9.2 to 11.1). So you can be 95 per cent confident that the population
mean number of bronchodilators prescribed for this group is somewhere between 9.2 and 11.1.
In the control group, the sample mean is 10.6 with a 95 per cent confidence interval for the
population mean (9.7 to 11.7), which can be similarly interpreted.

Exercise 9.3 Interpret and compare the sample mean number of hospital admissions,
and their corresponding confidence intervals, for the two groups in Table 9.1.

Confidence intervals as described above can also be applied to a population percentage,
provided that the values are percentages of a metric variable, for example percentage mor-
tality across a number of hospitals following some procedure (see, for example, Table 2.7).
However, if the data is a proportion or percentage of a nominal or ordinal variable, say the
proportion of patients with a pressure sore, or the proportion of mothers with an Edinburgh
Maternal Depression Scale score of more than 8, then a different approach, described next, is
needed.

Confidence interval for a population proportion

We start with an expression for the standard error of the sample proportion:

se. = (p) M
n

where p is the sample proportion, and # is sample size. Incidentally, the sampling distribution
of sample proportions has a binomial distribution, which is quite different from the Normal
distribution if the sample is small, but becomes more Normal as sample size increases. The 95
per cent confidence interval for the population proportion is equal to the sample proportion
plus or minus 1.96 * standard errors:

{[p—1.96 xs.e.(p)]to[p+ 1.96 x s.e.(p)]}

For example, from Table 1.6, 14 of the 106 women with a malignant diagnosis are pre-
menopausal giving a sample proportion p of 14/106 or 0.13. The standard error of p is thus:

0.13(1—0.13
se.(p) = % = 0.033

Therefore the 95 per cent confidence interval for the population proportion who are

4Whenweare dealing with proportions, we use, not the tdistribution, but the z, or Standard Normal, distribution.
The 95 per cent value for zis 1.96.
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pre-menopausal is:
(0.13 —1.96 x 0.033t00.13 + 1.96 x 0.033) = (0.065t00.195)

In other words you can be 95 per cent confident that the proportion of cases in this popu-
lation who are pre-menopausal lies somewhere between 0.065 to 0.195. Or alternatively, that
this interval represents a plausible range of values for the population proportion who are
menopausal.

Exercise 9.4 Calculate the standard error for the sample proportion of controls in Table
1.6 who are pre-menopausal, and hence calculate the 95 per cent confidence interval for
the corresponding population proportion. Interpret your result.

Estimating a confidence interval for the
median of a single population

If your data is ordinal then the median rather than the mean is the appropriate measure of
location (review Chapter 5 if you're not sure why). Alternatively, if your data is metric but
skewed (or your sample is too small to check the distributional shape), you might also prefer
the median as a more representative measure. Either way a confidence interval will enable you
to assess the likely range of values for the population median. As far as I know, SPSS does not
calculate a confidence interval for a single median, but Minitab does, and bases its calculation
on the Wilcoxon signed-rank test® (I'll discuss this in Chapter 12).

Table 9.2 Sample median pain levels, and 95 per cent confidence intervals for the difference
between the two groups, at three time periods, in the analgesics/stump pain study. Reproduced
courtesy of Elsevier (The Lancet, 1994, Vol No. 344, page 1724-6)

Median (IQR) pain

Blockade Control 95% CI for
group (n=27) group (n=29) difference (p)
After epidural bolus 0(0-0) 38 (17-67) 24 t0 43 (p < 0.0001)
After continuous epidural infusion 0 (0-0) 31 (20-51) 24 to 43 (p < 0.0001)
After epidural bolus in operating theatre 0(0-0) 35 (16—64) 19 to 42 (p < 0.0001)

Pain assessed by visual analogue scale (0-100 mm).

> We won’t deal with tests (i.e. hypothesis tests) until we get to Chapter 12, but the confidence intervals that I
discuss in this and in the next chapter are based on a number of different hypothesis tests. The alternative
would have been for me to introduce hypothesis tests before I dealt with confidence intervals. However, for
various pedagogic reasons I didn’t think this was appropriate.
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An example from practice
Table 9.2 is from the analgesics and stump pain study referred to in Table 5.3, and shows the

sample median pain levels and their 95 per cent confidence intervals (assessed using a visual
analogue scale), for the treatment and control groups, at three time periods.

Exercise 9.5 In Table 9.2, interpret and compare the differences in median pain levels
and their 95 per cent confidence intervals for each of the three time periods.
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Estimating the difference
between two population
parameters

Learning objectives

When you have finished this chapter you should be able to:

e Give some examples of situations where there is a need to estimate the difference
between two population parameters.

e Very briefly outline the basis of estimation of the difference between two population
means using methods based on the two-sample t test! (for independent populations)
and the matched-pairs ¢ test (for matched populations).

e \ery briefly outline the basis of estimation of the difference between two population
medians using methods based on the Mann-Whitney test (for independent popula-
tions) and the Wilcoxon test (for matched populations).

e Interpret results from studies that estimate the difference between two population
means, two percentages or two medians.

e Demonstrate an awareness of any assumptions that must be satisfied when estimating
the difference between two population parameters.

! Throughout this chapter we will be looking at methods of estimation based on various hypothesis tests. I will
begin to discuss hypothesis tests properly in Chapter 12.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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What's the difference?

As you have just seen, it’s possible to determine a confidence interval for any single population
parameter — a population mean, a median, a percentage and so on. However, by far the most
common application of confidence intervals is the comparison of two population parameters,
for example between the means of two populations, such as the mean age of a population of
women and the mean age of a population of men; I'll start with this.

Estimating the difference between the means of two
independent populations — using a method based on the
two-sample t test

The procedure here, like that for the single mean (see Chapter 9), is based on the  distribution
(see the footnote on p. 114). However, with two populations, you need to know if they are
independent or matched (see p. 81 to review matching). I'll start with estimating the difference
in the means of two independent populations, since this is by far the most common in practice.
For this we use a method based on the two-sample t test. First, there are a number of pre-
requisites that need to be met:

e Data for both groups must be metric. As you know from Chapter 5 the mean is only appro-
priate with metric data anyway.

e The distribution of the relevant variable in each population must be reasonably Normal. You
can check this assumption from the sample data using a histogram, although with small
sample sizes this can be difficult.

® The population standard deviations of the two variables concerned should be approximately
the same, but this requirement becomes less important as sample sizes get larger. You can
check this by examining the two sample standard deviations.?

An example using birthweights

Suppose you want to compare (by estimating the difference between them), the population
mean birthweights of infants born in a maternity unit with that of infants born at home (sample
datain Table 10.1). The two samples were selected independently with no attempt at matching.

Both SPSS and Minitab compute the sample mean birthweight of the home-born infants
to be 3726.5 g, with a standard deviation of 385.7 g. Recall that for the infants born in the
maternity units, sample mean birthweight was 3644.4 g with a standard deviation of 376.8
g (see p. 112). So there is a difference in the sample mean birthweights of 82.1 g, (3726.5 g
—3644.4 g), but this does not mean that there is a difference in the population mean birthweights.

2 This condition is usually stated in terms of the two variancesbeing approximately the same. Variance is standard
deviation squared.
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Table 10.1 Sample data for birthweight (g), Apgar scores and whether mother smoked during
pregnancy for 30 infants born in a maternity unit and 30 born at home

Birthweight (g) Mother smoked Apgar score

Infant Hospital birth® Home birth  Hospital birth Home birth  Hospital birth Home birth

1 3710 3810 0 0 8 10

2 3650 3865 0 0 7 8

3 4490 4578 0 0 8 9

4 3421 3522 1 0 6 6

5 3399 3400 0 1 6 7

6 4094 4156 0 0 9 10

7 4006 4200 0 0 8 9

8 3287 3265 1 0 5 6

9 3594 3599 0 1 7 8
10 4206 4215 0 0 9 10
11 3508 3697 0 0 7 8
12 4010 4209 0 0 8 9
13 3896 3911 0 0 8 8
14 3800 3943 0 0 8 9
15 2860 3000 0 1 4 3
16 3798 3802 0 0 8 9
17 3666 3654 0 0 7 8
18 4200 4295 1 0 9 10
19 3615 3732 0 0 7 8
20 3193 3098 1 1 4 5
21 2994 3105 1 1 5 5
22 3266 3455 1 0 5 6
23 3400 3507 0 0 6 7
24 4090 4103 0 0 8 9
25 3303 3456 1 0 6 7
26 3447 3538 1 0 6 7
27 3388 3400 1 1 6 7
28 3613 3715 0 0 7 7
29 3541 3566 0 0 7 8
30 3886 4000 1 0 8 6

“This is the data from Table 2.5.

It is important to remember that a difference between two sample values does not necessarily
mean that there is a difference in the two population values. Any difference in these sample
birthweight means might simply be due to chance. Now we come to an important point:

Ifthe 95 per cent confidence interval for the difference between two population parameters
includes zero, then you can be 95 per cent confident that there is no difference in the two
parameter values. If the interval doesn’t contain zero, then you can be 95 per cent confident
that there is a statistically significant difference in the means.
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The p value =
0.407 (ignore
for now).

The 95 % Cl for the
difference in the
two population
means.

The difference
between the two
sample means =
82.1667.

Independent samples test

t test for
squality of

Levene's test
for equality of

variances
E Si ?ég 2 Std. error
9 differdnce Difference
tailed)
Lower, Upper
Equal
variances .037 847 .835 407 -82.1667 98.4359 -114.8742 279.2076
assumed
Equal
variances .835 407  82.1667 98.4359 -114.8765 279.2099
not
assumed

Figure 10.1 SPSS output (abridged) for 95 per cent confidence interval (last two columns) for the
difference between two independent population mean birthweights, using samples of 30 infants born
in maternity units and 30 at home (data in Table 10.1)

In other words, if you want to know if there is a statistically significant difference between
two population means, calculate the 95 per cent confidence interval for the difference and see
if it contains zero.

It is possible to calculate these confidence intervals by hand, but the process is time-
consuming and tedious. Fortunately, most statistics programs will do it for you. Since dif-
ference between independent population means is one of the most commonly used approaches
in clinical research, you might find it helpful to see some of the output from SPSS and Minitab
for this procedure.

With SPSS

Using the birthweight data in Table 10.1, SPSS produces the results (abridged®) shown in Figure
10.1. These tell us that the difference in the two sample mean birthweights is —82.17 g. The sign
in front of this value depends on which variable you select first in the SPSS dialogue box. SPSS
subtracts the second variable selected (home births in this case) from the first (maternity unit
births). This result means that the sample mean birthweight was 82.17 g higher in the home
birth infants.

SPSS calculates two confidence intervals, one with standard deviations* assumed to be equal,
and one with them not equal. The 95 per cent confidence interval shown in the last two columns

3 Pve removed material that is not relevant.
* Both Minitab and SPSS refer to equality of variances.
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is (—114.9 to 279.2)g, the same in both cases. SPSS tests for equality of the standard deviations
(or variances), using Levene’s test. The assumption is that they are the same. We will discuss
tests in Chapter 12.

Since this confidence interval includes zero, you can conclude that there is no statistically
significant difference in population mean birthweights of infants born in a maternity unit and
infants born at home.

With Minitab The Minitab output, which confirms that from SPSS, is shown in Figure
10.2. The 95 per cent confidence interval is in the second row up.

An example from practice

Table 10.2 is from a cohort study of maternal smoking during pregnancy and infant growth
after birth (Conter ef al 1995). The subjects were 12 987 babies who were followed up for
three years after birth. Of these, 10 238 had non-smoking mothers, 2276 had mothers who had

The difference
between the
two sample
means = 82.2.

Two-Sample T-Test and Cl: Weight hosp (g), Weight home

Two-sample T for Weight hosp (g) vs Weight home The 95% Cl for the
difference in the two

population means.

N Mean StDev SE Mean
Weight hosp 30 3644 377 69
Weight home 30 3727 386

The p-value =
0.407 (ignore
for now).

Difference = mu Weight hosp (g) —n
Estimate for difference: —82.2
95% ClI for difference: (-279.3, 114.9)
T-Test of difference = 0 (vs not =): T-Value = -0.83 P-Value = 0.407 DF =57

Figure 10.2 Minitab output for 95 per cent confidence interval for the difference between two in-
dependent population mean birthweights, using samples of 30 infants born in maternity units and 30
at home. Note that Minitab uses the word ‘mu’ to denote the population mean, normally designated as
Greek u
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smoked one to nine cigarettes a day, and 473 had mothers who had smoked 10 or more
cigarettes a day. The figure shows the 95 per cent confidence intervals for differences in mean
weight according to sex of baby and smoking habits of mothers: at birth, and at three and six
months.

The results show, for example, that at birth, the difference between the sample mean weight
of female babies born to non-smoking mothers and those born to mothers smoking 10 or
more cigarettes a day, was (3220 — 3052) = 168 g. That is, the infants of smoking mothers
are on average lighter by 168 g. Is this difference statistically significant in the population,
or due simply to chance? The 95 per cent confidence interval of (—234 to —102) g, does not
include zero, so you can be 95 per cent confident that the difference is real, i.e. is statistically
significant.

Exercise 10.1 Interpret the sample mean and confidence intervals shown in Table 10.2
for all four differences in weights at six months.

Estimating the difference between two matched population
means - using a method based on the matched-pairs t test

If the data within each of the two groups whose means you are comparing is widely spread
compared to the difference in the spreads between the groups,” this can make it more difficult
to detect any difference in their means. When data is matched (see Chapter 7 for an explanation
of matching), this reduces much of the within-group variation, and, for a given sample size,
makes it easier to detect any differences between groups. As a consequence, you can achieve
better precision (narrower confidence intervals), without having to increase sample size. The
disadvantage of matching is that it is sometimes difficult to find a sufficiently large number of
matches (as you saw in the case-control discussion earlier).

In the independent groups case, the mean of each group is computed separately, and then a
confidence interval for the difference in these means is calculated. In the matched groups case,
we use a method based on the matched-pairs t test, in which the difference between each pair
of values is computed first and then a confidence interval for the mean of these differences is
calculated.

An example from practice

Table 10.3 shows the 95 per cent confidence intervals for the difference in bone mineral density in
two matched groups of women, one group depressed and one ‘normal’ (Michelson et al. 1995).
(Ignore the ‘SD from expected peak’ rows.) Only one of the confidence intervals contains zero,
indicating that there is no difference in population mean bone mineral density at the radius,
but there is at all of the other five sites.

> Called ‘between-group’ variation.
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Table 10.3 Confidence intervals for the differences between the population mean bone mineral
densities in two individually matched groups of women, one group depressed, the other ‘normal’,
using a method based on the matched-pairs t test. Reproduced from NEJM, 335, 1176-81, by
permission of Massachusetts Medical Society

Depressed Normal Mean Difference P
Bone Measured’ Women Women (95% CI) Value
Lumbar spine (anteroposterior)
Density (g/cm?) 1.00 £0.15 1.07 £ 0.09 0.08 (0.02 to 0.14) 0.02
SD from expected peak —0.42 +1.28 0.26 +0.82 0.68 (0.13 to 1.33)
Lumbar spine (lateral)*
Density (g/cm?) 0.74 £ 0.09 0.79 £ 0.07 0.05 (0.00 to 0.09) 0.03
SD from expected peak —0.88 +1.07 —0.36 +0.80 0.50 (0.04 to 1.03)
Femoral neck
Density (g/cm?) 0.76 £0.11 0.88 £0.11 0.11 (0.06 to 0.17) <0.00
SD from expected peak —1.30 + 1.07 —0.22+£0.99 1.08 (0.55 to 1.61)
Ward’s triangle
Density (g/cm?) 0.70 £0.14 0.81 £0.13 0.11 (0.06 to 0.17) <0.00
SD from expected peak —0.93 +1.24 0.18 +1.22 1.11 (0.60 to 1.62)
Trochanter
Density (g/cm?) 0.66 £0.11 0.74 £ 0.08 0.08 (0.04 to 0.13) <0.001
SD from expected peak —0.70 £+ 1.22 0.26 +0.91 0.97 (0.46 to 1.47)
Radius
Density (g/cm?) 0.68 £ 0.04 0.70 £ 0.04 0.01 (-0.01 to 0.04) 0.25
SD from expected peak —0.19 +0.67 0.03 £ 0.67 0.21 (-0.21 to 0.64)

*Plus-minus values are means & SD. CI denotes confidence interval.

TValues for “SD from expected peak” are the numbers of standard deviations from the expected peak density derived
from a population-based study of normal white women.?

*This measurement was made in 23 depressed women and 23 normal women.

Exercise 10.2 In Table 10.3, which population difference in bone mineral density is
estimated with the greatest precision?

You can also calculate a confidence interval for the difference in two population percentages
provided they derive from two metric variables. For the difference between two population pro-
portions, however, a different approach is needed. This is an extension of the single proportion
case discussed in Chapter 9, as you will now see.

Estimating the difference between two independent
population proportions

Suppose you want to calculate a 95 per cent confidence interval for the difference between the
population proportion of women having maternity unit births who smoked during pregnancy
and the proportion having home births who smoked. The sample data on smoking status for
the sample of 60 mothers is shown in Table 10.1.
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There are 10 mothers who smoked among the 30 giving birth in the maternity unit and
six among the 30 giving birth at home. This gives sample proportions of 10/30 = 0.3333, and
6/30 = 0.2000, respectively. You can check whether this difference is statistically significant or
likely to be due to chance alone, by calculating a 95 per cent confidence interval for the difference
in the corresponding population proportions.® To do this by hand is a bit long-winded and
you would want to use a computer program to do the calculation for you.

An example from practice

If you look back at Table 9.1, the randomised trial of integrated versus conventional care for
asthma patients, the last column shows the 95 per cent confidence intervals for the difference
in population percentages between the two groups, for a number of patient perceptions of the
scheme. As you can see, none of the confidence intervals include zero, so you can be 95 per
cent confident that the difference in population percentages between the groups of patients is
statistically significant in each case.

Estimating the difference between two independent
population medians — the Mann-Whitney rank-sums method

As you know from Chapter 5, the mean may not be the most representative measure of location
if the data is skewed, and is not appropriate anyway if the data is ordinal. In these circumstances,
you can compare the population medians rather than the means, and in place of the 2-sample ¢
test (a parametric procedure), use a method based on the Mann—Whitneytest (anon-parametric
procedure).

Parametric versus non-parametric methods

A parametric procedure can be applied to data which is metric, and also has some partic-
ular distribution, most commonly the Normal distribution. A non-parametric procedure
does not make these distributional requirements. So if you are analysing data that is either
metric but not Normal, or is ordinal, then you need to use a non-parametric approach.
The Mann—Whitney procedure only requires that the two population distributions have
the same approximate shape, but does not require either to be Normal. It is the non-
parametric equivalent of the two-sample £ test.

Briefly, the Mann—Whitney method starts by combining the data from both groups, which are
then ranked. The rank values for each group are then separated and summed. If the medians
of the two groups are the same, then the sums of the ranks of the two groups should be

©The 95 per cent confidence interval is (—0.088 to 0.355). Since this interval includes 0, we conclude that there
is no difference in the proportion of mothers who smoked at home and in the maternity unit.
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Mann-Whitney Test and CI: Apgar matn, Apgar home

Confidence
interval for the

Apgar ma N = 30 Median = 7.000 . .
Apgar ho N = 30 Median = 8.000 ?Vcc;e;?;]g;:]r]sthe
Point estimate for ETA1l-ETA2 is -1.000 ’
95.2 Percent CI for ETAl-ETA2 is (-2.000,0.000)

W = 790.5

Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.0668
The test is significant at 0.0616 (adjusted for ties)

Cannot reject at alpha = 0.05

Figure 10.3 Minitab’s Mann-Whitney output for a 95 per cent confidence interval for the difference
between two independent median Apgar scores - for infants born in maternity units and at home (raw
data in Table 10.1). Note that Minitab uses Greek ‘ETA’ to denote the population median

similar. However, if the rank sums are different, you need to know whether this difference
could simply be due to chance, or is because there really is a statistically significant difference
in the population medians. A Mann—Whitney confidence interval for the difference will help
you decide between these alternatives.

As an illustration, let’s compare the difference in the population median Apgar scores for
the maternity unit and home birth infants, using the sample data in Table 10.1. These are
independent groups, but since this data is ordinal, we cannot use the two-sample ¢ test, but we
can use the Mann—Whitney test of medians. The output from Minitab is shown in Figure 10.3,
with the 95 per cent confidence interval in the fourth row.” Since the confidence interval of
(—2to 0) contains zero, you must conclude that the difference in the population median Apgar
scores is not statistically significant. Notice that the confidence level is given as 95.2 per cent,
not 95 per cent. Confidence intervals for medians cannot always achieve the precise confidence
level you asked for, because of the way in which a median is calculated.

An example from practice

Table 10.4 is from a randomised controlled double-blind trial to compare the cost effectiveness
of two treatments in relieving pain after blunt instrument injury in an A&E department (Rainer
et al. 2000). It shows the median times spent by two groups of patients in various clinical
situations. One group received ketorolac, the other group morphine. The penultimate column
contains the 95 per cent confidence intervals for the difference in various median treatment
times (minutes), between the groups (ignore the last column). As the footnote to the table
indicates, these results were obtained using the Mann—Whitney method.

The only confidence interval not containing zero is that for the difference in median ‘time
between receiving analgesia and leaving A&E), for which the difference in the sample medians is
20.0 minutes. So this is the only treatment time for which the difference in population median

7 As far as I am aware, SPSS does not appear to calculate a confidence interval for two independent medians.
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times is statistically significant, and you can be 95 per cent confident that this difference is
between 4 and 39 minutes.

Exercise 10.3 Table 10.4 includes the sample median times and their 95 per cent con-
fidence intervals for each time interval, for both groups separately. Only one pair of
confidence intervals don’t overlap, those for the only time difference which is statistically
significant. Why aren’t you surprised by this?

Estimating the difference between two matched population
medians — Wilcoxon signed-ranks method

When two groups are matched, but either the data is ordinal, or if metric is noticeably skewed,
you can obtain confidence intervals for differences in population medians, based on the non-
parametric Wilcoxon test. The two population distributions, regardless of shape, should be
symmetric. This is the non-parametric equivalent of the parametric matched-pairs t test, de-
scribed above. The matching will again reduce the variation within groups, so narrower, and
therefore more precise, confidence intervals are available for a given sample size.

Briefly the Wilcoxon method starts by calculating the difference between each pair of values,
and these differences are then ranked (ignoring any minus signs). Any negative signs are then
restored to the rank values, and the negative and positive ranks are separately summed. If
the medians in the two groups are the same, then these two rank sums should be similar. If
different, the Wilcoxon method provides a way of determining whether this is due to chance,
or represents a statistically significant difference in the population medians.

An example from practice

Table 10.5 contains the results of a case-control study into the dietary intake of schizophrenic
patients living in the community in Scotland (McCreadie et al. (1998). It shows the daily
energy intake of eight dietary substances for the cases (17 men and 13 women diagnosed with
schizophrenia), and the controls, each individually matched on sex, age, smoking status and
employment status.

If you focus on the penultimate column, in which data for men and women is combined,
you can see that only the confidence interval for daily protein intake, (—1.1 to 32.8) g, contains
zero, which implies that there is no difference in population median protein intake between
schizophrenics and normal individuals. For all other substances, the difference is statistically
significant.

Exercise 10.4 Explain the meaning of the 95 per cent confidence interval for difference
in median alcohol intake of the two groups in Table 10.5.
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Estimating the ratio of two
population parameters

Learning objectives

When you have finished this chapter you should be able to:

® Explain what is meant by the ratio of two population parameters and give some
examples of situations where there is a need to estimate such a ratio.

e Explain and interpret a confidence interval for a risk ratio.
e Explain and interpret a confidence interval for an odds ratio.

e Explain the difference between crude and adjusted risk and odds ratios.

Estimating ratios
Estimating the ratio of two independent population means

When you compare two population means you usually want to know if they’re the same or
not, and if not, how big the difference between them is. Sometimes though, you might want to
know how many times bigger one population mean is than another. The ratio of the two means
will tell us that.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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If two sample means have a ratio of 1, this tells us only that the means are the same size in
the sample. If the sample ratio is different from 1, you need to check whether this is simply due
to chance, or if the difference is statistically significant — one mean is bigger than the other. You
can do this with a 95 per cent confidence interval for the ratio of population means. And here’s
the rule:

If the confidence interval for the ratio of two population parameters does not contain the
value 1, then you can be 95 per cent confident that any difference in the size of the two
measures is statistically significant.

Compare this with the rule for the difference between two population parameters, where
that rule is that if the confidence interval does not contain zero, then any difference between
the two parameters is statistically significant.

An example from practice

Look again at the last column in Table 9.1, which shows a number of outcomes from a ran-
domised trial to compare integrated versus conventional care for asthma patients. The last
column contains the 95 per cent confidence intervals for the ratio of population means for
the treatment and control groups. You will see that all of the confidence intervals contain 1,
indicating that the population mean number of bronchodilators used, the number of inhaled
steroids prescribed and so on, was no larger (or smaller) in one population than in the other.

The sample ratio furthest away from 1 is 1.31, for the ratio of mean number of hospital
admissions, i.e. the sample of integrated care group patients had 31 per cent more admissions
than the conventionally treated control group patients. However, the 95 per cent confidence
interval of (0.87 to 1.96) includes 1, which implies that this is generally not the case in the
populations.

Confidence interval for a population risk ratio

Table 6.1 showed the contingency table for a cohort study into the risk of coronary heart disease
(CHD) as an adult, among men who weighed 18 Ibs or less at 12 months old (the risk factor).
On p. 104 we derived a risk ratio of 1.93 from this sample cohort. In other words, men who
weighed 18 Ibs or less at one year, appear to have nearly twice the risk of CHD when an adult,
as men who weighed more than 18 Ibs at one year. But is this true in the population of such
men, or no more than a chance departure from a population ratio of 1? You now know that you
can answer this question by examining the 95 per cent confidence interval for this risk ratio.
The 95 per cent confidence interval for the CHD risk ratio turns out to be (0.793 to 4.697).!
Since this interval contains 1, you can conclude, that despite a sample risk ratio of nearly 2, that

! The calculation of confidence intervals for risk ratios and odds ratios is a step too far for this book. Those
interested in doing the calculation by hand can consult Altman (1991) who gives the necessary formulae.
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weighing 18 Ibs or less at one year is not a significant risk factor for coronary heart disease in
adult life in the sampled population. Notice that, in general, the value of a sample risk or odds
ratio, as in this example, does notlie in the centre of its confidence interval, but is usually closer
to the lower value.

An example from practice

Table 11.1 is from a cohort study of 552 men surviving acute myocardial infarction, in which
each subject was assessed for depression at the beginning of the study (Ladwig et al. 1994).
14.5 per cent were identified as severely depressed, 2.3 per cent as moderately depressed, and
63.2 per cent had low levels of depression. The subjects were followed up at 6 months, and
a number of outcomes measured, including: suffering angina, returning to work, emotional
stability and smoking. The researchers were interested in examining the role of moderate and
of severe depression (compared to low depression), as risk factors for each of these outcomes.

The results show the crude and adjusted risk ratios (labelled ‘relative risks’ by the authors) for
each outcome. The crude risk ratios are not adjusted for any confounding factors, whereas the
adjusted risk ratios are adjusted for the factors listed in the table footnote (review the material
on confounding and adjustment in Chapter 7 if necessary).

Let’s interpret the 95 per cent risk ratios for ‘return to work’. The crude risk ratios for a
return to work indicate lower rates of return to work for men both moderately depressed (risk

Table 11.1 The crude and adjusted risk ratios (labelled relative risk by the authors), for a
number of outcomes related to the risk factor of experiencing moderate and severe levels of
depression compared to low depression. Reprinted courtesy of Elsevier (The Lancet, 1994,
Vol No. 343, page 20-3)

Relative risk (95% CI)

Depression level Crude Adjusted”
Angina pectoris

Moderate 1.36 (0.83 to 2.23) 0.97 (0.55 to 1.70)
Severe 3.12 (1.58 t0 6.16) 2.31 (1.11 to 4.80)
Return to work

Moderate 0.41 (0.22 t0 0.77) 0.58 (0.28 to 1.17)
Severe 0.39 (0.18 to 0.88) 0.54 (0.22 to 1.31)
Emotional Instability

Moderate 2.21 (1.33 to 3.69) 1.87 (1.07 to 3.27)
Severe 5.55 (2.87 to 10.71) 4.61 (2.32109.18)
Smoking

Moderate 1.39 (0.71 to 2.73) 1.19 (0.56 to 2.51)
Severe 2.63 (1.23 to 5.60) 2.84 (1.22 to 6.63)
Late potentials

Moderate 1.30 (0.76 to 2.22) 1.54 (0.86 to 2.74)
Severe 0.70 (0.33 to 1.47) 0.75 (0.35 to 2.17)

* Adjusted for age, social class, recurrent infarction, rehabilitation, cardiac events and helplessness
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ratio = 0.41), and severely depressed (risk ratio = 0.39), compared to men with low levels of
depression. Neither of the confidence intervals, (0.22 to 0.77) and (0.18 to 0.88), includes 1,
indicating statistical significance. However, after adjusting for possible confounding variables,
the adjusted risk ratios are 0.58 and 0.54, and are no longer statistically significant, because the
confidence intervals for both risk ratios, for moderate depression (0.28 to 1.17), and severe
depression (0.22 to 1.31), now include 1.

Exercise 11.1 Table 11.2 is from the same cohort study referred to in Exercise 8.9,
to investigate dental disease, and risk of coronary heart disease (CHD) and mortality,
involving over 20 000 men and women aged 25-74, who were followed up between 1971—
4 and 1986—7 (DeStefano et al. 1993).

The results give the risk ratios (called relative risks here) for CHD and mortality in
those with a number of dental diseases compared to those without (the referent group),
adjusted for a number of possible confounding variables (see table footnote for a list of
the variables adjusted for).

Briefly summarise what the results show about dental disease as a risk factor for CHD
and mortality. Note: the periodontal index (range from 0-8, higher is worse) measures
the average degree of periodontal disease in all teeth present, and the oral hygiene index
(range 0-6, higher is worse) measures the average degree of debris and calculus on the
surfaces of six selected teeth.

Confidence intervals for a population odds ratio

Table 6.2 showed the data for the case-control study into exercise between the ages of 15 and
25, and stroke later in life. The risk factor was ‘not exercising), and you calculated the sample
crude odds ratio of 0.411 for a stroke, in those who hadn’t exercised compared to those who

Table 11.2 Adjusted risk ratios for CHD and mortality among those with dental disease
compared to those without dental disease*. Reproduced by permission of BMJ Publishing Group.
(BMJ, 1993, Vol. 306, pages 688-691)

Indicator No of subjects’  Coronary heart disease ~ Total mortality

Periodontal class:

No disease 673 1.00 1.00

Gingivitis 529 0.98 (0.63 to 1.54) 1.42 (0.84 t0 2.42)

Periodontitis 300 1.72 (1.10 to 2.68) 2.12 (1.24 to 3.62)

No teeth 92 1.71 (0.93 to 3.15) 2.60 (1.33 t0 5.07)
Periodontal index (per unit) 1502 1.09 (1.00 to 1.19) 1.11 (1.01 to 1.22)
Oral hygiene index (per unit) 1436 1.11 (0.96 to 1.27) 1.23 (1.06 to 1.43)

* Adjusted for age, sex, race, education, poverty index, marital state, systolic blood pressure, total cholesterol concen-
tration, diabetes, body mass index, physical activity, alcohol consumption, and cigarette smoking.

TExcluding those with missing data for any variable and, for periodontal index and hygiene index, those who had no
teeth.
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had (see p. 105). So the exercising group appear to have under half the odds for a stroke as
the non-exercising group. However, you need to examine the confidence interval for this odds
ratio to see if it contains 1 or not, before you can come to a conclusion about the statistical
significance of the population odds ratio.

SPSS produces an odds ratio of 0.411, with a 95 per cent confidence interval of (0.260
to 0.650). This does not contain 1, so you can be 95 per cent confident that the odds ra-
tio for a stroke in the population of those who did exercise compared to the population of
those who didn’t exercise is somewhere between 0.260 and 0.650. So early-life exercise does
seem to reduce the odds for a stroke later on. Of course this is a crude, unadjusted odds ra-
tio, which takes no account of the contribution, positive or negative, of any other relevant
variables.

An example from practice

Table 11.3 shows the results from this same exercise/stroke study, where the authors provide
both crude odds ratios and ratios adjusted for a number of different variables (Shinton and
Sagar 1993).

We have been looking at exercise between the ages of 15 and 25, the first row of the table.
Compared to the crude odds ratio calculated above of 0.411, the authors report an odds ratio
for stroke, adjusted for age and sex, among those who exercised compared to those who didn’t
exercise, as 0.33, witha 95 per cent confidence interval of (0.20 to 0.60). So even after the effects of
any differences in age and sex between the two groups has been adjusted for, exercising remains
a statistically significant ‘risk’ factor for stroke (although beneficial in this case). Adjustment
for possible confounders is crucial if your results are to be of any use, and I will return to
adjustment and how it can be achieved in Chapter 18.



138 CH 11 ESTIMATING THE RATIO OF TWO POPULATION PARAMETERS

Table 11.3 0dds ratios for stroke™, according to whether, and at what age, exercise was
undertaken by patients, compared to controls without stroke. Reproduced by permission of BMJ
Publishing Group. (BMJ, 1993, Vol. 307, pages 231-234)

Exercise not undertaken Exercise undertaken
No of cases: QOdds ratio No of cases:
QOdds ratio no of controls  (95% confidence interval)  no of controls

Age when exercise undertaken (years):

15-25 1.0 70:68 0.33 (0.2 t0 0.6) 55:130
25-40 1.0 103:136 0.43 (0.2 t0 0.8) 21:57
40-55 1.0 101:139 0.63 (0.3 to 1.5) 10:22

* Adjusted for age and sex

Exercise 11.2. (a) Explain briefly why, in Table 11.3, age and sex differences between the
groups have to be adjusted for. (b) What do the results indicate about exercise as a risk
factor for stroke among the 25—40 years and 40-55 years groups?

Exercise 11.3. Refer back to Table 1.7, the results from a cross-section study into throm-
botic risk during pregnancy. Identify and interpret any statistically significant odds ratios.
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Testing hypotheses about the
difference between two
population parameters

Learning objectives

When you have finished this chapter you should be able to:

Explain how a research question can be expressed in the form of a testable hypothesis.
Explain what a null hypothesis is.

Summarise the hypothesis test procedure.

Explain what a p-value is.

Use the p-value to appropriately reject or not reject a null hypothesis.

Summarise the principal tests described in this chapter, along with their most appro-
priate application, and any distributional and other requirements.

Interpret SPSS and Minitab results from a hypothesis test.
Interpret published results of hypothesis tests.
Point out the advantages of confidence intervals over hypothesis tests.

Describe type I and type II errors, and their probabilities.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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e Explain the power of a test and how it is calculated.
® Explain the connection between power and sample size.

e (alculate sample size required in some common situations.

The research question and the hypothesis test

The procedures discussed in the preceding three chapters have one primary aim: to use con-
fidence intervals to estimate population parameter values, and their differences and ratios.
We were able to make statements like, ‘We are 95 per cent confident that the range of values
defined by the confidence interval will include the value of the population parameter, or, ‘The
confidence interval represents a plausible range of values for the population parameter.

There is, however, an alternative approach called hypothesis testing, which uses exactly the
same sample data as the confidence interval approach, but focuses not on estimatinga parameter
value, but on testingwhether its value is the same as a previously specified or hypothesised value.
Inrecent years, the estimation approach has become more generally favoured, primarily because
the results from a confidence interval provides more information than the results of a hypothesis
test (as you will see a bit later). However, hypothesis testing is still very common in research
publications, and so I will describe a few of the more common tests.! Let’s first establish some
basic concepts.

The null hypothesis

As we have seen, almost all clinical research begins with a question. For example, is Malathion
a more effective drug for treating head lice than d-phenothrin? Is stress a risk factor for breast
cancer? To answer questions like this you have to transform the research question into a testable
hypothesis called the null hypothesis, conventionally labelled Hy. This usually takes the following
form:

Hy: Malathion is NOT a more effective drug for treating head lice than d-phenothrin.
Hy: Stress is NOT a risk factor for breast cancer.

Notice that both of these null hypotheses reflect the conservative position of no difference, no
risk, no effect, etc., hence the name, ‘null’ hypothesis. To test this null hypothesis, researchers
will take samples and measure outcomes, and decide whether the data from the sample provides
strong enough evidence to be able to refute or reject the null hypothesis or not. If evidence
against the null hypothesis is strong enough for us to be able to reject it, then we are implicitly
accepting that some specified alternative hypothesis, usually labelled Hj, is probably true.

! And there are some situations where there is no reasonable alternative to a hypothesis test.
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The hypothesis testing process

The hypothesis testing process can be summarised thus:
® Select a suitable outcome variable.

® Use your research question to define an appropriate and testable null hypothesis involving
this outcome variable.

® Collect the appropriate sample data and determine the relevant sample statistic, e.g. sample
mean, sample proportion, sample median, (or their difference or ratio), etc.

® Use a decision rule that will enable you to judge whether the sample evidence supports or
does not support your null hypothesis.

® Thus, on the strength of this evidence, either reject or do not reject your null hypothesis.

Let’s take a simple example. Suppose you want to test whether a coin is fair, i.e. not weighted
to produce more heads or more tails than it should. Your null hypothesis is that the coin is fair,
i.e. will produce as many heads as tails, so that the population proportion r, equals 0.5. Your
outcome variable is the sample proportion of heads, p. You toss the coin 100 times, and get
42 heads, so p = 0.42. Is this outcome compatible with your hypothesised value of 0.5? Is the
difference between 0.5 and 0.42 statistically significant or could it be due to chance?

You can probably see the problem. How do we decide what proportion of heads we might
expect to get if the coin is fair? As it happens, there is a generally accepted rule, which involves
something known as the p-value.

The p-value and the decision rule

The hypothesis test decision rule is: If the probability of getting the number of heads you get (or
even fewer) is less than 0.05,2 when the null hypothesis is true, then this is strong enough evidence
against the null hypothesis and it can be rejected. The beauty of this rule is that you can apply it
to any situation where the probability of an outcome can be calculated, not just to coin tossing.

As a matter of interest, the probability of getting say 42 or fewer heads if the coin is fair
is 0.0666, which is not less than 0.05. This is not strong enough evidence against the null
hypothesis. However, if you had got 41 heads or fewer, the probability of which is 0.0443, this
isless than 0.05, now the evidence against Hy is strong enough and it can be rejected. The coin
is not fair. This crucial threshold outcome probability (0.0443 in this example), is called the
p-value, and defined thus:

A p-value is the probability of getting the outcome observed (or one more extreme),
assuming the null hypothesis to be true.

20r 0.01. There is nothing magical about these values, they are quite arbitrary.
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So, in the end, the decision rule is simple:

® Determine the p-value for the output you have obtained (using a computer).

® Compare it with the critical value, usually 0.05.

o [If the p-value is less than the critical value, reject the null hypothesis; otherwise do not
reject it.

When you reject a null hypothesis, it’s worth remembering that although there is a probability
of 0.95 that you are making the correct decision, there is a corresponding probability of 0.05
that your decision is incorrect. In fact, you never know whether your decision is correct or not,’
but there are 95 chances in 100 that it is. Compare this with the conclusion from a confidence
interval where you can be 95 per cent confident that a confidence interval will include the
population parameter, but there’s still a 5 per cent chance that it will not.

It’s important to stress that the p-value is not the probability that the null hypothesis is true
(or not true). It’s a measure of the strength of the evidence against the null hypothesis. The
smaller the p-value, the stronger the evidence (the less likely it is that the outcome you got
occurred by chance). Note that the critical value, usually 0.05 or 0.01, is called the significance
level of the hypothesis test and denoted « (alpha). We’ll return to alpha again shortly.

Exercise 12.1 Suppose you want to check your belief that as many males as females use
your genito-urinary clinic. (a) Frame your belief as a research question. (b) Write down an
appropriate null hypothesis. (c) You take a sample of 100 patients on Monday and find that
40 are male. The p-value for 40 or fewer males from a sample of 100 individuals is 0.028.
Do you reject the null hypothesis? (d) Your colleague takes a sample of 100 patients on the
following Friday and gets 43 males, the p-value for which is 0.097. Does your colleague
come to the same decision as you did? Explain your answer.

A brief summary of a few of the commonest tests

Some hypothesis tests are suitable only for metric data, some for metric and ordinal data, and
some for ordinal and nominal data. Some require data to have a particular distribution (often
Normal); these are parametric tests. Some have no or less strict distributional requirements;
the non-parametric tests. Before I discuss a few tests in any detail, I have listed in Table 12.1
a brief summary of the more commonly used tests, along with their data and distributional
requirements, if any. I am ignoring tests of single population parameters since these are not
required often enough to justify any discussion.

3 Because you'll never know what the value of any population parameter is.
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Table 12.1 Some of the more common hypothesis tests

Two-sample ¢ test. Used to test whether or not the difference between two independent population means
is zero (i.e. the two means are equal). The null assumption is that it is. Both variables must be metric
and Normally distributed (this is a parametric test). In addition the two population standard deviations
should be similar (but for larger sample sizes this becomes less important).

Matched-pairs t test. Used to test whether or not the difference between two paired population means
is zero. The null assumption is that it is, i.e. the two means are equal. Both variables must be metric, and
the differences between the two must be Normally distributed (this is a parametric test).

Mann-Whitney test. Used to test whether or not the difference between two independent population
medians is zero. The null assumption is that it is, i.e. the two medians are equal. Variables can be either
metric or ordinal. No requirement as to shape of the distributions, but they need to be similar. This is the
non-parametric equivalent of the two-sample ¢ test.

Kruskal-Wallis test. Used to test whether the medians of three of more independent groups are the
same. Variables can be either ordinal or metric. Distributions any shape, but all need to be similar. This
non-parametric test is an extension of the Mann-Whitney test.

Wilcoxon test. Used to test whether or not the difference between two paired population medians is
zero. The null assumption is that it is, i.e. the two medians are equal. Variables can be either metric
or ordinal. Distributions any shape, but the differences should be distributed symmetrically. This is the
non-parametric equivalent of the matched-pairs  test.

Chi-squared test. (x2). Used to test whether the proportions across a number of categories of two or
more independent groups is the same. The null hypothesis is that they are. Variables must be categorical.*
The chi-squared test is also a test of the independence of the two variables (and has a number of other
applications). We will deal with the chi-squared test in Chapter 14.

Fisher’s Exact test. Used to test whether the proportions in two categories of two independent groups is
the same. The null hypothesis is that they are. Variables must be categorical. This test is an alternative to
the 2 x 2 chi-squared test, when cell sizes are too small (I'll explain this later).

McNemar’s test. Used to test whether the proportions in two categories of two matched groups is the
same. The null hypothesis is that they are. Variables must be categorical.

“Categorical will normally be nominal or ordinal, but metric discrete or grouped metric continuous might be used
provided the number of values or groups is small.

Interpreting computer hypothesis test results for the difference in two
independent population means - the two-sample t test

Since the two-sample ttest is one of the more commonly used hypothesis tests, it will be helpful
to have a look at the computer output. For example, let’s apply the two-sample ¢ test to test the
null hypothesis of no difference in the population mean birthweight of maternity-unit-born
infants and the mean birthweight of home-born infants (data in Table 10.1). The null
hypothesis is:

Ho: um = pn
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Where, 1y = population mean birthweight of maternity-unit-born infants, and puy = the
population mean birthweight of home-born infants.*

With SPSS

Look back at Figure 10.1, which shows the output from SPSS, which, in addition to the
95 per cent confidence interval, gives the result of the two-sample ¢ test of the equality of
the two population mean birthweights. The test results are given in columns five, six and seven.
The column headed ‘Sig. (2-tailed)’ gives the p-value of 0.407. Since this is not less than 0.05,
you cannot reject the null hypothesis. You thus conclude that there is no difference in the two
population mean birthweights.

With Minitab

The Minitab output in Figure 10.2 gives the same p-value value as SPSS (0.407), confirming
that the two population means are not significantly different.

Some examples of hypothesis tests from practice
Two independent means - the two-sample t test

Table 12.2 shows the baseline characteristics of two independent groups in arandomised contro-
lled trial to compare conventional blood pressure measurement (CBP) and ambulatory blood
pressure measurement (ABP) in the treatment of hypertension (Staessen et al. 1997). p-values
for the differences in the basic characteristics of the two groups are shown in the last column.

The authors used a variety of tests to assess the difference between several parameters for
these independent groups (although these are referred to in the text, this information should
have been available somewhere in the table itself). To assess the difference in population mean
age, and mean body mass index, they used a two-sample ¢ test. For age, the p-value is 0.03,
so you can reject the null hypothesis of equal mean ages and conclude that the difference is
statistically significant. The p-value for the difference in mean body mass index is 0.39, so you
can conclude that the mean body mass index in the two populations is the same.

Exercise 12.2 Comment on what the results in Table 12.2 indicate about the difference
between the two populations in terms of their mean serum creatinine and serum total
cholesterol levels.

Exercise 12.3 Refer back to Table 1.6, showing the basic characteristics of women in the
breast cancer and stressful life events case-control study. Comment on what the p-values
tell you about the equality or otherwise, between cases and controls, of the means of the
seven metric variables (shown with an * — see table footnote).

* Note that differences in independent percentages can also be tested with the two-sample ¢ test.
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Table 12.2 Baseline characteristics of two independent groups, from a randomised controlled
trial to compare conventional blood pressure measurement (CBP) and ambulatory blood pressure
measurement (ABP) in the treatment of hypertension. Reproduced from JAMA, 278, 1065-72,
courtesy of the American Medical Association

CBP Group ABP Group
Characteristics (n = 206) (n=213) P
Age, mean (SD), y 51.3 (11.9) 53.8 (10.8) .03
Body mass index, mean (SD), kg/m? 28.5 (4.8) 28.2 (4.4) .39
‘Women, No. (%) 102 (49.5) 124 (58.2) .07
Receiving oral contraceptives, No. (%)* 14 (13.7) 10 (8.1) 17
Receiving hormonal substitution, No. (%)* 19 (18.6) 19 (15.3) 51
Previous antihypertensive treatment, No. (%)* 134 (65.0) 139 (65.3) .95
Diuretics, No. (%)* 47 (35.1) 59 (42.4) .26
B-Blockers, No. (%)* 65 (48.5) 80 (57.6) 17
Calcium channel blockers, No. (%)* 45 (33.6) 38 (27.3) 32
Angiotensin-converting enzyme inhibitors, No. (%)* 50 (37.3) 48 (34.5) 72
Multiple-drug treatment, No. (%)* 62 (46.3) 65 (46.8) .97
Smokers, No. (%) 42 (20.5) 35(16.4) .29
Alcohol use, No. (%) 115 (55.8) 102 (47.9) .10
Serum creatinine, mean (SD), ;umol/L* 85.75 (15.91) 88.4 (16.80) .25
Serum total cholesterol, mean (SD), mmol/L* 6.00 (1.03) 6.10 (1.19) .32

*Percentages and values of P computed considering only women receiving antihypertensive drug treatment before
their enrollment.

TDefined as antihypertensive drug treatment within 6 months before the screening visit.

Divide creatinine by 88.4 and cholesterol by 0.02586 to convert milligrams per deciliter.

Two matched means - the matched-pairs t test

Table 10.3 provides an example from practice, and shows the p-values for the differences in
population mean bone mineral densities between two individually matched groups of depressed
and normal women (which we have already discussed in confidence interval terms). As you
can see, only at the radius are the population mean bone mineral densities the same, indicated
by a p-value of 0.25. All the other p-values are less than 0.05. Notice that this confirms the
confidence interval results.’

Two independent medians - the Mann-Whitney test

With two independent groups, and when the data is ordinal or skewed metric, the median is
the preferred measure of location. In these circumstances, the Mann-Whitney test can be used
to test the null hypothesis that the two population medians are the same.

Recall that in Chapter 10, I introduced the Mann-Whitney procedure to calculate confidence
intervals for the difference between two independent population median treatment times. These

> Note that differences in matched percentages can also be tested with the matched-pairs ¢ test.
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were from a study of the use of ketorolac versus morphine to treat limb injury pain. Table 10.4
contains both 95 per cent confidence intervals and p-values from this study. Only one confidence
interval does not include zero, that for the time between receiving analgesia and leaving A&E
(4.0 t0 39.0). This outcome has a p-value 0of 0.02, less than 0.05, which confirms the fact that the
difference in treatment time between the two population median times is statistically significant.

However there is a problem with the time for preparation of the analgesia. Table 10.4 shows
this has a 95 per cent confidence interval of (0 to 5.0), which includes zero, implying no
significant difference in treatment times. But the p-value is given as 0.0002, which suggests
a highly significant difference in population medians. In the accompanying text the authors
indicate that this difference is significant and quote the low p-value, so I can only assume a
typographical error in the confidence interval.

Interpreting computer output for the Mann-Whitney test

In view of the widespread use of the Mann-Whitney test you might find it helpful to see the
output for this procedure from both SPSS and Minitab.

With SPSS

With the Apgar scores in Table 10.1, you can use the Mann-Whitney test to check if the
population median Apgar scores for infants born in a maternity unit and those born at home
are the same and differ in the sample only by chance. The null hypothesis is that these medians
are equal. The output from SPSS is shown in Figure 12.1. The p-value of 0.061 is labelled
‘Asymp. Sig. (2-tailed)” Since this is not less than 0.05 you cannot reject the null hypothesis of
no difference in population median Apgar scores between the two groups.

Test Statistics

APGARALL
Mann-Whitney U~ 325.500
Wilcoxon W 790.500 The p
Z 1876 value.
Asymp. Sig. (2- .061

tailed)

Figure 12.1 Output from SPSS for the Mann-Whitney test of the difference between population me-
dians of the two independent Apgar scores (raw data in Table 10.1)

With Minitab

If you refer back to Figure 10.3, you will see the results of Minitab’s Mann-Whitney test three
rows from the bottom.® The p-value is given in the second row up as 0.0616 and since this is

¢ ETA’ is Minitab’s word for the population median.
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notless than 0.05 you cannot reject the null hypothesis. This is confirmed in the bottom row of
the table, and enables you to conclude that the population median Apgar scores are the same
in both groups of infants.

Two matched medians — the Wilcoxon test

In the same circumstances as for the Mann-Whitney test described above, but with matched
populations, the Wilcoxon test is appropriate. Look back at Table 10.5, which was from a
matched case-control study into the dietary intake of schizophrenic patients living in the
community in Scotland. Here the authors have used the Wilcoxon matched-pairs test to test
for differences in the population median daily intakes of a number of substances between ‘All
Patients’ and ‘All Controls’ The p-values are in the column headed ‘P’. As you can see, the only
p value notless than 0.05 is that for protein (p-value = 0.07), so this is the only substance whose
median daily intake does not differ between the two populations. Once again this confirms the
confidence interval results.

Confidence intervals versus hypothesis testing

I said at the beginning of this chapter that where possible, confidence intervals are preferred to
hypothesis tests because the confidence intervals are more informative. How so? Have another
look at Table 10.4, from the study comparing ketorolac and morphine for limb injury pain.
The authors give both 95 per cent confidence intervals and p-values for differences in a number
of different treatment times, between two groups of limb injury patients. Let’s take the last
of these. For the ‘interval between receiving analgesia and leaving A&E), the p-value of 0.02
enables us to reject the null hypothesis, and you would conclude that the difference between
the two population median treatment times is statistically significant.

The 95 per cent confidence interval of (4.0 to 39.0) minutes, tells us, not only that the
difference between the population medians is statistically significant — because the confidence
interval does not contain zero — but in addition, that the value of this difference in population
medians is likely to be somewhere between 4.0 minutes and 39 minutes. So the confidence
interval does everything that the hypothesis test does — it tells us if the medians are equal or
not, but it also gives us extra information — on the likely range of values for this difference.
Moreover, unlike a p-value, the confidence interval is in clinically meaningful units, which helps
with the interpretation. So whenever possible, it is good practice to use confidence intervals in
preference to p-values.

Nobody’s perfect — types of error

Supposeyouare investigatinganew drug for the treatment of hypertension. Your null hypothesis
is that the drug has no effect. Let’s suppose that the drug does actually reduce mean systolic
blood pressure, but, on average, by only 5 mmHg. However, the hypothesis test you use can
only detect a change of 10 mmHg or more. As a consequence, you will not find strong enough
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evidence to reject the null hypothesis, and you’ll conclude, mistakenly, that the new drug is not
effective. But the effect is there, it’s just that your test does not have enough power to detect it.

There are three questions here. First, what exactly is the power of a test and how can we
measure it? Second, how can we increase the power of the test we are using? Third, is there a
more powerful test that we can use instead? Before I address these questions, a few words on
types of error.

Whenever you decide either to reject or not reject a null hypothesis, you could be making
a mistake. After all, you are basing your decision on sample evidence. Even if you have done
everything right, your sample could still, by chance, not be very representative of the population.
Moreover, your test might not be powerful enough to detect an effect if there is one. There are
two possible errors:

Type I error: Rejecting a null hypothesis when it is true. Also known as a false positive. In
other words, concluding there is an effect when there isn’t. The probability of committing
atype I error is denoted « (alpha), and is the same alpha as the significance level of a test.

Type II error: Not rejecting a null hypothesis when it is false. Also known as a false negative.
That is, concluding there is no effect when there is. The probability of committing a type
II error is denoted B (beta).

Ideally, you would like a test procedure which minimised the probability of a typeI error, because
in many clinical situations such an error is potentially serious — judging some procedure to be
effective when it is not. When you set the significance level of a test to « = 0.05, it’s because
you want the probability of a type I error to be no more than 0.05. Nonetheless, if there isa real
effect you would certainly like to detect it, so you also want to minimise the probability of 8, a
type Il error, or put another way, you want to make (1 — ) as large as possible.

Exercise 12.4 Explain, with examples, what is meant in hypothesis testing by: (a) a false
positive; (b) a false negative.

Father *FOETWE mMe -HF;—H

1 have Commitied a TJFQE_,W
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The power of a test

We can now come back to the three questions above. To answer the first question — the power
of a test is defined to be (1 — B); it is a measure of its capacity to reject the null hypothesis
when it is false. In other words, to detect an effect if one is present. In practice, 8 is typically
set at 0.2 or 0.1. This provides power values of 0.80 (or 80 per cent), and 0.90 (or 90 per cent)
respectively. So if there is an effect, then the probability of the test detecting it is 0.80 or 0.90.

The power of a test is a measure of its capacity to reject the null hypothesis when it is false.
In other words, its capacity to detect an effect if one is present.

Although you would like to minimise both « and B, unfortunately they are, for a given sample
size, linked. You can’t make 8 smaller without making « larger, and vice versa. Thus when you
decide a value for «, you are also inevitably fixing the value of 8. To answer the second question
— the only way to reduce both simultaneously (and increase the power of a test) is to increase
the sample size.

To answer the third question, is there a more powerful test? Briefly, parametric tests are more
powerful than non-parametric tests (see p. 127 on the meaning of these terms). For example,
a Mann-Whitney test has 95 percent of the power of the two-sample ¢ test.” The Wilcoxon
matched-pairs test similarly has 95 per cent of the power of the matched-pairs ¢ test. As for
the chi-squared test, there is usually no obvious alternative when used for categorical data, so
comparisons of power are less relevant, but it is known to be a powerful test. Generally you
should of course use the most powerful test that the type of data, and its distributional shape,
will allow.

An example from practice

The following is an extract from the RCT of epidural analgesic in the prevention of stump and
phantom pain after amputation, referred to in Table 5.3. The authors of the study outline their
thinking on power thus:

The natural history of phantom pain after amputation shows rates of about 70%,
and in most patients the pain is not severe. Since epidural treatment is an invasive
procedure, we decided that a clinically relevant treatment should reduce the inci-
dence of phantom pain to less than 30% at week 1 and then at 3, 6, and 12 months
after amputation. Before the start of the study, we estimated that a sample size of
27 patients per group would be required to detect a between-group difference of 40%
in the rate of phantom pain (type I error rate 0.05; type II error rate 0.2; power =
0.8).

7In view of the restrictions associated with the two-sample  test, the Mann-Whitney test seems an excellent
alternative!
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Exercise12.5 a)Explain, with the help ofa few clinical examples, why you would normally
want to minimise o, when testing a hypothesis. (b) « is conventionally set to 0.05, or 0.01.
Why, if you want to minimise it, don’t you set it at 0.001 or 0.000001, or even 0?

Maximising power - calculating sample size

Generally, the bigger the sample, the more powerful the test.® The minimum size of a sample
for a given power is determined both by the chosen level of alpha, as well as the power required.
The sample size calculation can be summarised thus:

Decide on the minimum size of the effect that would be clinically useful (or otherwise of
interest).

Decide the significance level ¢, usually 0.05.

Decide the power required, usually 80 per cent.

® Do the sample size calculation, using some appropriate software, or the rule of thumb
described below.

Minitab has an easy to use sample size calculator for the most commonly used tests. Machin,
et al. (1987) is a comprehensive collection of sample size calculations for a large number of
different test situations.

Rules of thumb?®
Comparing the means of two independent populations (metric data)
The required sample size n is given by the following expression:

_2x s.d.?

B x k

n

Where s.d. is the population standard deviation (assumed equal in both populations). This
can be estimated using the sample standard deviations, if they are available from a pilot study,
say. Otherwise the s.d. will have to be guessed using whatever information is available. E is the
minimum change in the mean that would be clinically useful or otherwise interesting. k is a
magic number which depends on the power and significance levels required, and is obtained
from Table 12.3.

8 These sample size calculations also apply if you are calculating confidence intervals. Samples that are too small
produce wide confidence intervals, sometimes too wide to enable a real effect to be identified.
I am indebted to Andy Vail for this material.
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Table 12.3 Table of magic numbers for sample size calculations

Power, (1 — f8)
70 % 80 % 90 % 95 %
Significance level, o 0.05 6.2 7.8 10.5 13.0
0.01 9.6 11.7 14.9 17.8

For example, suppose you propose to use a case-control study to examine the efficacy of a
program of regular exercise, as an alternative to your current drug of choice, in treating moder-
ately hypertensive patients. The minimal difference in mean systolic blood pressures between
the cases (given the exercise program), and the controls (given the existing drug), that you
think clinically worthwhile is 10 mmHg. You will have to make an intelligent guess as to the
standard deviation of systolic blood pressure (assumed the same in both groups — see above).
Information on this, and many other measures, is likely to be available from reference sources,
from the research literature, from colleagues, etc. Let’s assume systolic blood pressure s.d. =
12 mmHg. If power required is 80 per cent, with a significance level of 0.05, then from
Table 12.3, k = 7.8, and the sample size required per group is:

2 x 122

So you will need at least 23 subjects in each of the two groups (always round up to next highest
integer) to detect a difference between the means of 10 mmHg. Note that these sample sizes
will also be large enough for two matched populations since these require smaller sample sizes
for the same power.

Comparing the proportions in two independent populations
(binary data)

The required sample size, , is given by:

[P x (1= P+ [Py x (1= Py)]
n= x k
(Pa_Pb)z

Where P, is the proportion with treatment a, P, is proportion with treatment b, so (P, — Py)
is the effect size; and k is the magic number from Table 12.3.

For example, suppose the percentage of elderly patients in a large district hospital with
pressure sores is currently around 40 per cent, or 0.40. You want to test a new pressure-sore-
reducing mattress, and you would like the percentage with pressure sores to decrease to at least
20 per cent, or 0.20. So P, = 0.40, and (1 — P,) = 0.60; P, = 0.20, and (1 — P,) = 0.80;
therefore (P, — Py) = (0.40 — 0.20) = 0.20. If power required is 80 per cent and significance
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level o = 0.05, then required sample size per group is:

_(0.40 x 0.60) + (0.20 x 0.80)

x 7.8 =78.0
0.202

n

Thus you would need at least 78 subjects in each group, which would also be big enough for
matched proportions.

Exercise12.6 Intheaboveexamples for: (a) hypertension and (b) the pressure sore exam-
ple; what sample sizes would be required if power and significance levels were respectively:
(1) 90 per cent and 0.05; (ii) 90 per cent and 0.01; (iii) 80 per cent and 0.01?

Exercise 12.7 Suppose you are proposing to use a randomised controlled trial to study
the effectiveness of St John’s Wort, as an alternative to an existing drug for the treatment
of mild to moderate depression. The percentage of patients reporting an improvement in
mood three months after existing drug treatment is 70 per cent. You would be satisfied
if the percentage reporting mood improvement after three months of St John’s Wort was
80 per cent. How big a sample would you require to detect this improvement if you wanted
your test to have, (a) 80 per cent power and an « of 0.05; (b) 90 per cent power and an «
of 0.017
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Testing hypotheses about
the ratio of two population
parameters

Learning objectives

When you have finished this chapter you should be able to:

e Describe the usual form of the null hypothesis in the context of testing the ratio of
two population parameters

e Qutline the differences between tests of ratios and tests of differences.

e Interpret published results on tests of risk and odds ratios.

Testing the risk ratio

In Chapter 11 you saw that if the confidence interval for a sample risk ratio contains 1, then the
population risk ratio is most probably not statistically significant, i.e. not significantly different
from 1. This in turn means that the risk factor in question is not a statistically significant risk.
You can also use the hypothesis test approach to find out whether any departure in the sample
risk ratio from 1 is statistically significant, or is more likely due to chance. The null hypothesis
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is that the population risk ratio equals 1, the alternate hypothesis is that it isn’t equal to 1. That
is:

Hp: populationriskratio = 1

H;: populationrisk ratio # 1

In other words, if Hy is true, the risk factor in question does not significantly increase or decrease
the risk for the condition or disease. If the associated p value is less than 0.05 (or 0.01), you
can reject the null hypothesis Hy, and conclude that the population risk ratio in question is
statistically significant, and the risk factor in question is a statistically significant risk.

An example from practice

Table 13.11s from arandomised trial into the efficacy of long-term treatment with subcutaneous
heparin in unstable coronary-artery disease (FRISC II Investigators 1999), and shows the risk
ratios, 95 per cent confidence intervals and p values for a number of clinical outcomes, in two
independent groups, one group given heparin, the other a placebo.

As you can see from the p values in the last column, three out of the six risk ratios were
statistically significant: death, myocardial infarction or both, at one month (p value = 0.048);
death, myocardial infarction or revascularisation, at one month (p value = 0.001); and death,
myocardial infarction or revascularisation, at three months (p value = 0.031). All three of these
pvalues are less than 0.05, the remaining three are all greater than 0.05. Notice that these results
are confirmed by the corresponding 95 per cent confidence intervals.

Table 13.1 Risk ratios, 95 per cent confidence intervals, and p-values, for a number of clinical
outcomes, at 1 month, 3 months and 6 months, in two independent groups, one group given
heparin and the other group a placebo. Reprinted courtesy of Elsevier (The Lancet, 1999, Vol No.
354, page 701-7)

Dalteparin Placebo Risk ratio
Variable (n=1129) (n=1121) (95% CI) p
1 month
Death, MI, or both 70 (6.2%) 95 (8.4%) 0.73 (0.54-0.99) 0.048
Death, MI, or revascularisation 220 (19.5%) 288 (25.7%) 0.76 (0.65-0.89) 0.001
3 months
Death, MI, or both 113 (10.0%) 126 (11.2%) 0.89 (0.70-1.13) 0.34
Death, MI, or revascularisation 328 (29.1%) 374 (33.4%) 0.87 (0.77-0.99) 0.031
6 months*
Death, MI, or both 148 (13.3%) 145 (13.1%) 1.01 (0.82-1.25) 0.93
Death, MI, or revascularisation 428 (38.4%) 440 (39.9%) 0.96 (0.87-1.07) 0.50

MI = myocardial infarction.
*Dalteparin (n=1115), placebo (n = 1103).
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Table 13.2 Relative risk for a number of non-cerebral bleeding complications in patients
receiving tenecteplase compared to those receiving alteplase, in the treatment of acute
myocardial infarction. Reprinted courtesy of Elsevier (The Lancet, 1999, Vol No. 354,
page 716-21)
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Frequency (%)
Tenecteplase Alteplase Relative risk

Complication (n = 8461) (n = 8488) (95% CI) P
Reinfarction 4.1 3.8 1.078 (0.929-1.250) 0.325
Recurrent angina 19.4 19.5 0.995 (0.935-1.058) 0.877
Sustained hypotension 15.9 16.1 0.988 (0.921-1.058) 0.737
Cardiogenic shock 3.9 4.0 0.965 (0.832-1.119) 0.664
Major arrhythmias 20.5 21.2 0.968 (0.913-1.027) 0.281
Pericarditis 3.0 2.6 1.124 (0.941-1.343) 0.209
Invasive cardiac procedures

PTCA 24.0 23.9 1.006 (0.953-1.061) 0.843

Stent placement 19.0 19.7 0.968 (0.910-1.029) 0.302

CABG 5.5 6.2 0.884 (0.783-0.999) 0.049

IABP 2.6 2.7 0.968 (0.805-1.163) 0.736
Killip class >1 6.1 7.0 0.991 (0.982-0.999) 0.026
Tamponade or cardiac rupture 0.6 0.7 0.816 (0.558-1.193) 0.332
Acute mitral regurgitation 0.6 0.7 0.886 (0.613-1.281) 0.571
Ventricular septum defect 0.3 0.3 0.817 (0.466—1.434) 0.568
Anaphylaxis 0.1 0.2 0.376 (0.147-0.961) 0.052
Pulmonary embolism 0.09 0.04 2.675 (0.710-10.080) 0.145

PTCA = Percutaneous transluminal coronary angioplasty; CABG = coronary-artery bypass graft; IABP = Intra-aortic

balloon pump.

compared to those receiving alteplase.!

serious, cardiogenic shock, 90 per cent expected mortality).

Exercise 13.1 Table 13.2 is from a double blind RCT to assess the efficacy of tenecteplase
as a possible alternative to alteplase in the treatment of acute myocardial infarction
(ASSENT-2 Investigators 1999). The table contains the risk ratios (relative risks) for a
number of in-hospital cardiac events and procedures, for patients receiving tenecteplase,

Identify and comment on those cardiac events and procedures for which patients on
alteplase had a significant higher risk of experiencing than those on tenecteplase. Note:
the key to the cardiac procedures is given in the table footnote. The Killip scale is a
classification system for heart failure in patients with acute myocardial infarction, and
varies from I (least serious, no heart failure, 5 per cent expected mortality), to IV (most

! As a background note: rapid infusion of alteplase, with aspirin and heparin, is the current gold standard for
pharmacological reperfusion in acute myocardial infarction. Tenecteplase is a mutant of alteplase with fewer

of the limitations of alteplase.



158 CH 13 TESTING HYPOTHESES ABOUT THE RATIO OF TWO POPULATION PARAMETERS
Testing the odds ratio

Here the null hypothesis is that the population odds ratio is not significantly different from 1.
That is:

Hp: population odds ratio = 1

H;: population odds ratio # 1

In other words, in the population, if Hy is true the risk factor in question does not significantly
increase or decrease the odds for the condition or disease. Only if the p value for the sample
odds ratio is less than 0.05, can you reject the null hypothesis, and conclude that the risk factor
is statistically significant.

An example from practice

Table 13.3 is from an unmatched case-control study into the effect of passive smoking as
a risk factor for coronary heart disease (CHD), in Chinese women who had never smoked
(He et al. 1994). The cases were patients with CHD, the controls women without CHD. The
study looked at both passive smoking at home from husbands who smoked, and at work from
smoking co-workers. The null hypotheses were that the population odds ratio was equal to
1, both at home and at work, i.e. passive smoking has no effect on the odds for CHD. The

Table 13.3 0dds ratios, 95 per cent confidence intervals and p values, from an unmatched
case-control study into the effect of passive smoking as a risk factor for coronary heart disease.
The cases were patients with coronary heart disease, the controls individuals without coronary
heart disease. Reproduced from BMJ, 308, 380-4, courtesy of BMJ Publishing Group

Adjusted odds ratio

(95% confidence interval)* P value
Final model (factors 1 to 7):
1 Age (years) 1.13 (1.04 to 1.22) 0.003
2 History of hypertension 2.47 (1.14 to 5.36) 0.022
3 Type A personality 2.83 (1.31 t0 6.37) 0.008
4 Total cholesterol (mg/dl) 1.02 (1.01 to 1.03) 0.0006
5 High density lipoprotein cholesterol (mg/dl) 0.94 (0.90 to 0.98) 0.003
6 Passive smoking from husband 1.24 (0.56 to 2.72) 0.60
7 Passive smoking at work 1.85 (0.86 to 4.00) 0.12
Other model (factors 1 to 5 and passive smoking at work) 1.95 (0.90 to 4.10)* 0.087
Other model (factors 1 to 5 and passive smoking from 2.36 (1.01 to 5.55)" 0.049

husband or at work, or both)

*Adjusted for the other variables in the final model.
T Adjusted for the first five varibles above; odds ratios for these variables in the other models were essentially the same
as those shown above and are not shown.
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table contains the adjusted odds ratios for CHD for a number of risk factors, with 95 per cent
confidence intervals and p values.

Asyou can see, the adjusted odds ratio for CHD because of passive smoking from the husband
was 1.24, with a p value of 0.60, so you cannot reject the null hypothesis. You conclude that
passive smoking from husbands is not a statistically significant risk factor for CHD in wives.
The same conclusions can be drawn for the odds ratio of 1.85 for passive smoking at work,
p value equals 0.12.

Exercise 13.2 In Table 13.3, identify those risk factors which are statistically significant
for CHD in the population from whom this sample of women was drawn.
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Testing hypotheses about
the equality of population
proportions: the chi-squared test

Learning objectives

When you have finished this chapter you should be able to:

e Describe the rationale underlying the chi-squared hypothesis test.
e Explain the difference between observed and expected values.

e (alculate expected values and the test statistic.

® Qutline the procedure for the chi-squared test for the independence of two variables
in a population.

e Qutline the procedure for the chi-squared test for the equality of two population pro-
portions, and show this is equivalent to the test of the independence of two variables.

e Perform a chi-squared test in 2 x 2, 2 x 3, 2 x 4 and 3 x 4 cases.
® Interpret SPSS and Minitab chi-squared test results.
e Interpret published results of chi-squared tests.

e (Qutline the procedure for the chi-squared test for trend.
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Table 14.1 Observed values in the sample of mothers giving birth in maternity units and at
home, and whether they smoked during their pregnancy (raw data in Table 10.1)

If the two variables, smoking
and birthing place, are
unrelated in the population,
then there is no reason why

Smoked? this proportion of smokers
Yes No Totals should be any different ...
Maternity 10 “ 20 30
o ... to this
B|r|t:(|:r;g Home 6 # 30 proportion. (see
P text below and
Totals 16 44 60 footnote).

Of all the tests in all the world. .. the
chi-squared (x?) test

Two hypothesis tests are prominent in general clinical research. One is the two-sample ¢ test,
(see Chapter 12), which, as you have seen, is used with metric data to test the equality of two
independent population means. The second is the chi-squared test' (denoted x?).> This has
two common applications: first as a test of whether two categorical variables are independent
or not; second, as a test of whether two proportions are equal or not. As you will see, these tests
are in fact equivalent.

The chi-squared test is applied to frequency data® in the form of a contingency table (i.e.
a table of cross-tabulations), with the rows representing categories of one variable and the
columns categories of a second variable. The null hypothesis is that the two variables are
unrelated.

To explain the idea of the chi-squared test, let’s refer back to the birthweight data in
Table 10.1, and ask the question, ‘Is there a relationship between the variables “birthing place”
and “whether the mother smoked during pregnancy”?” The relevant data is summarised in the
2 x 2 table, Table 14.1. The columns of this table represent the two groups ‘smokers’ and ‘non-
smokers’ These two groups are independent - this is an essential requirement of the chi-squared
test.* The rows of the table represent the variable birthing place (either maternity unit, or home
birth), again independent.

! The test is called the chi-squared test because it uses the chi-squared, or x2, distribution. If a variable X is
Normally distributed, then the variable X has a x? distribution. The x? distribution is very skewed in small
samples but becomes more similar in shape to the Normal distribution when samples are large.

2 And pronounced as in Kylie Minogue

3 The method does not work for tables of percentages, proportions, or measurements.

*If the two groups are matched, then McNemar’s test is appropriate (see Table 12.1).
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If we want to know whether the variables ‘birthing place’ and ‘smoking’ are related, the
competing hypotheses will be:

Hp : Birthing place and smoking status are not related in the population,
i.e. the two variables are independent.

H; : Birthing place and smoking status are related in the population.
The two variables are dependent.

Now, if the two variables are unrelated, then there is no reason why the proportion of smokers
among mothers giving birth in a maternity unit, should be any different to the proportion of
smokers among home-birth mothers.’ In other words, these two proportions should be the
same. But we have already discussed a method for deciding whether two proportions are the
same — by calculating a confidence interval for the difference in two population proportions —
see p. 126 in Chapter 10. In fact, the two methods — asking if two variables are independent
or if two proportions are the same - are equivalent whenever one of the variables has only two
categories. However, although we can calculate a confidence interval in the two proportions
approach as we saw in Chapter 10, we can’t with the chi-squared approach.

You can see that 10 out of the sample of 30 maternity-unit mothers smoked (a proportion of
0.333), and six out of 30 home-birth mothers smoked (a proportion of 0.2000). These sample
proportions are definitely not the same, but this could be due to chance.

The crucial question is this, ‘What proportions would we expect to find if the null hypoth-
esis of unrelated variables was true?” The answer is, since we’ve got 16 smokers in a total of
60 women, a proportion of 16/60 = 0.2667, we would expect to find 0.2667 or 26.67 per cent
of the 30 in each category, which is 0.2667 x 30 = 8. So you'd expect about eight smokers in
each group, rather than the observed values of 10 and six. An easier way to calculate expected
frequencies is to use the expression:

Total of row cell is in x total of column cell is in
Expected cell frequency =

overall total frequency

For example, for the top left-hand cell, the row total is 30, the column total is 16 and the overall
total is 60, so the expected value is (30x 16)/60 = 8. Since in this example the row totals are both
30, this means that the other two cells must each have an expected value of 22. In other words,
the two-by-two table you would expect to see if the null hypothesis was true is that shown in
Table 14.2.

Exercise14.1 Calculate the expected values for the contingency table of ‘mother smoked’
and ‘Apgar score < 7, shown in Table 2.11.

>If there was a relationship, for example, maternity unit mothers tended to smoke more on average than
home-birth mothers, then we would expect to find that the proportion of smokers among these mothers was
consistently larger than among home-birth mothers. If there is 1o relationship, i.e. if the two variables are
independent, then there is no reason to expect one proportion generally to be any larger or any smaller than
the other.
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Table 14.2 Expected cell values if the null hypothesis of unrelated
variables (or equal proportions) is true

Smoked?

Group 1: Yes  Group 2: No  Totals

Place of birth  Maternity unit 8 22 30
Home 8 22 30
Totals 16 44 60

Are the observed and expected values close enough?

Asyou’ve seen, even if the null hypothesis is true, you wouldn’t expect the difference between the
observed and expected values to be exactly zero. But how far away from zero does this difference
have to be, before you accept that the sample results are indicative of a true difference in the
proportions in the population, rather than chance?

You can use the chi-squared test to answer this question: if the p-value associated with the
chi-squared test is less than 0.05 (or 0.01), you can reject the null hypothesis and conclude that
the two variables are not independent or, put another way, there is a statistically significant
difference in the proportions.

The chi-squared test can be used with more than two categories in each variable, but with
small sample sizes the maximum number of either is limited by the proviso that none of the
expected values should be less than 1, and that 80 per cent of expected values should be greater
than 5.% There are two ways round the problem of low expected values. First, increase the
sample size — usually impractical. Second, amalgamate two or more rows or columns, if this
can be done and still make sense.

Calculation of a chi-squared test is not difficult to do by hand if the number of categories is
small, but you would have to have available, and know how to use, a table of chi-squared values
(I'm assuming here that calculation of the p-value is too difficult by hand, so this is a practical
alternative). The procedure is as follows:

® (Calculate the expected value E, for each cell in the table.

For each cell calculate the value of (O — E), where O is the observed value.

Square each (O — E) value.

Divide each (O — E)? value by the E value for that cell.

Sum all of the values in the previous step.

Take the square root of the result from the previous step. This result is called the test statistic.”

®There is some dispute among statisticians about the validity of this condition — some suggest that the
chi-squared test still works well even with low expected frequencies.

7 For the mathematically minded, the test statistic = > { @ }
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Table 14.3 Table of critical values for x?2 test with statistical
significance of 0.05. To reject the null hypothesis of unrelated,
i.e. independent variables, or of equal proportions, the value of
the test statistic must exceed the value in column two for the
given table sizes in column one

Value to be exceeded to

reject null hypothesis of

unrelated variables, or of
(No. rows — 1) x (No. cols—1) equal proportions

3.84
5.99
9.49
12.59
16.92

O O\ BN =

To reject the null hypothesis of equal proportions, i.e. of independent variables, the value of
the test statistic must exceed the critical chi-squared value obtained from a chi-squared table.
Some of these values are shown in Table 14.3, for a level of significance of 0.05. For example, the
test statistic must exceed 3.84 for a 2 x 2 table. In practice, you will, no doubt, use a computer
program to supply the p-value for the chi-squared test, and thus to reject or not reject the null
hypothesis that the two variables are independent, i.e. that the proportions are equal across
categories.

Exercise 14.2 Calculate the value of the test statistic using the expected values you
calculated in Exercise 14.1. With the help of Table 14.3, can you reject the null hypothesis
that ‘smoking during pregnancy’ and ‘Apgar scores < 7, are independent? Explain.

An example from practice

Table 14.4 is from the randomised controlled trial into ketorolac versus morphine for the
treatment of limb pain (first referred to in Table 10.4) and shows the basic characteristics of the
patients participating in the trial. The chi-squared test has been used four times to test whether
the proportions (expressed here as percentages) in the ketorolac group and the morphine
group are the same. First for ‘the proportion of men’ (categories ‘men’ and ‘not men’); then
for ‘fracture site’; then for ‘referred for orthopaedic treatment’; and finally for ‘admitted to
hospital’

As you can see, the chi-squared test applied to the fracture sites data, for example, tests
whether the proportions between the two groups is the same for all six sites, and gives rise to
a2 x 6 table. The p-value is 0.91, which is not less than 0.05, so you can conclude that the
null hypothesis of equal proportions cannot be rejected. In fact, the p-value for the chi-squared
test on each of the other three items are also all considerably greater than 0.05 indicating no
difference between the two groups in any of them.
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Table 14.4 Basic characteristics of the patients participating in a randomised controlled trial
of ketorolac versus morphine for the treatment of blunt injury limb pain (see Table 10.5). The
chi-squared test has been used four times to test whether the proportions in the ketorolac and
morphine groups are the same for a number of items. Values are numbers (percentage™) unless
stated otherwise. Reproduced from BMJ, 321, 1247-51, by permission of BMJ

Ketorolac group Morphine group

Variable (n=175) (n=73) P value
Mean (SD) age (years) 53.9 (21.7) 53.2 (21.8) 0.85%
No (%) of men 38 (51) 33 (45) 0.51§
Mean (SD) body mass index (kg/m?) 22.8 (3.2) 23.0 (3.7) 0.77*
Mean (interquartile range) time between 95 (30-630) 82 (33-921) 0.75

injury and arrival at hospital (minutes)
Cause of injury:

Motor vehicle crash 6 (8) 4 (5) 0.589
Falls 46 (61) 51 (70)
Crush 20 (27) 14 (19)
Other 3(4) 4 (5)
Fractures: 50 (67) 48 (66) 0.91§
Clavicle, humerus, elbow 5 (7) 8 (11)
Radius, ulnar 8 (11) 11 (15)
Hand 15 (20) 13 (18)
Femur, patella 14 (19) 12 (16)
Tibia, fibula 5 (7) 3 (4)
Foot 2 (3) 1(1)
Non-fractures:
Dislocation, upper limb 2 (3) 1(1)
Soft tissue injury, upper limb 10 (13) 10 (14)
Soft tissue injury, lower limb 14 (19) 14 (19)
Initial mean (SD) pain score:
At rest 3.8 (1.1) 3.9 (1.1) 0.65
With activity 8.1 (1.2) 8.1 (1.2) 0.85*
Referred for orthopaedic assessment 41 (55) 36 (49) 0.52§
Admitted to hospital 38 (51) 29 (40) 0.18§
Admitted with adverse effects 0 3 (4)

*Percentages may not sum to 100 because of rounding.

TPatient’s admitted to hospital (to orthopaedic or emergency observation ward).
¥+ test for unpaired means comparison.

§x? test.

qFisher’s exact test.

Notice that the authors have used Fisher’s Exact test (see Table 12.1 for a brief description)
to compare the equality of the proportions between the two groups for ‘cause of injury’. This
is almost certainly because of low expected values in some cells.

The chi-squared test for trend

The chi-squared trend test is another useful application of the chi-squared distribution, and is
appropriate if either variable has categories that can be ordered. I can best explain with a real
example.
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Table 14.5 Numbers of subjects by social class in
cases and controls, in a study of stressful life events as
a possible risk factor for breast cancer in women

Malignant diagnosis ~ Benign diagnosis

Social class (cases) group (control) group
1 10 20
II 38 82
1T non-manual 28 72
IIT manual 13 24
v 11 21
\% 3 2
VI 3 4
Totals 106 226

An example from practice

Table 14.5 shows the social class categories (ordinal data) of the cases and controls in the
unmatched case-control study of breast cancer in women (refer to Table 1.6). Recall that the
subjects were women who attended with a breast lump. The cases were those women who
received a malignant diagnosis, the controls those who received a benign diagnosis. These two
groups are independent.

With two groups and seven ordered categories of ‘social class’, we have a 2 x 7 table. If you
apply the chi-squared test here, you are testing whether the proportion of breast cancer cases is
the same in each social class category, and simultaneously whether the two variables, diagnosis
and social class, are independent. If the proportions are not the same you conclude that the
variables are associated in some way.®

8 Note that to perform the chi-squared test for trend we have to number the categories.
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The problem is that if social class is associated with diagnosis, then you would expect the
proportion getting a benign diagnosis to vary systematically, either increasing or decreasing,
as social class increased.’ In other words, the variability in the proportions may be due largely
to this trend, rather than that the variables are associated.

In the chi-squared test for trend, the null hypothesis is that there is no trend, and the p-value
is used in the usual way. Note that the test statistic for the trend test will always be less than
that for the overall test described earlier. However, the trend test may produce a statistically
significant result even when the overall test does not. This is because the test for trend is a
more powerful test. The net result of all this is that if one or both of your variables has ordinal
categories, you should use the chi-squared test for trend rather than the overall chi-squared
test.

As a matter of interest, the overall chi-squared test for the data in Table 14.5 gives a p-value
of 0.784, while the chi-squared trend test gives a p-value of 0.094. As it happens, neither of
these is statistically significant, but is an illustration of how different the results from the two
tests can be.

Exercise 14.3 Refer back to Table 1.6, the breast cancer and stress case-control study.
The table footnote indicates four chi-squared trend tests. Comment on what each p-value
reveals about the existence of a trend in the categories of each of the variable concerned.

The chi-squared test has a large number of other applications, one of which we’ll meet in
Chapter 19.

° The direction of change would depend on whether stressful life events were more, or less, common in higher
social class groups.
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Measuring the association
between two variables

Learning objectives

When you have finished this chapter you should be able to:
e Explain the meaning of association.

e Draw and interpret a scatterplot, and from it assess the linearity, direction and
strength of an association.

e Distinguish between negative and positive association.
e Explain what a correlation coefficient is.

e Describe Pearson’s correlation coefficient r, its distributional requirements, and in-
terpret a given value of r.

e Describe Spearman’s correlation coefficient r; and interpret a given value of r;.

e Describe the circumstances under which Pearson’s r or Spearman’s r, is appropriate.

Association

When we say that two ordinal or metric variables are associated, we mean that they behave in
a way that makes them appear ‘connected’ - changes in either variable seem to coincide with
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changes in the other variable. It’s important to note (at this point anyway), that we are not
suggesting that change in either variable is causing the change in the other variable, simply that
they exhibit this commonality. As you will see, association, if it exists, may be positive (low
values of one variable coincide with low values of the other variable, and high values with high
values) or negative (low values with high values and vice versa).

In this chapter, I want to discuss two alternative methods of detecting an association. The
first method relies on a plot of the sample data, called a scatterplot, in which values of one
variable are plotted on the vertical axis and values of the other on the horizontal axis. The
second approach is numeric, making both comparison and inference possible.

The scatterplot

A scatterplot will enable you to see if there is an association between the variables, and if there
is, its strength and direction. But the scatterplot will only provide a qualitative assessment, and
thus has obvious limitations. First, it’s not always easy to say which of two sample scatterplots
indicates the stronger association and second, it doesn’t allow us to make inferences about
possible associations in the population.

An example from practice

As part of a study of the possible association between Crohn’s disease (CD) and ulcerative
colitis (UC), researchers in Canada (Blanchard et al. 2001) produced the scatterplot shown in
Figure 15.1. It doesn’t matter which variable is plotted on which axis for the scatterplot itself,
but in the study of causal relationships between variables (which I will discuss in Chapter 17),
the choice of axis becomes more important.

Looking at the scatterplot it’s not difficult to see that something is going on here. The scatter
is not just a random cloud of points, but appears to display a pattern — low CD levels seem to
be associated with low UC levels, and higher CD levels with high UC levels. You could justly
claim that the two variables appear to be positively associated.

As a second example, Figure 15.2 shows a scatterplot taken from a study into the possible
relationship between percentage mortality from aortic aneurysm, and the number of aortic
aneurysm episodes dealt with per year, in each of 22 hospitals (McKee and Hunter 1995). This
scatterplot displays a negative association between the two variables, low values for number of
episodes seem to be associated with high values for percentage mortality, and vice versa.

As a final example from practice, Figure 15.3 shows a scatterplot taken from the cross-
section study into the possible contribution of channel blockers (prescribed for depression),
to the suicide rate in 284 Swedish municipalities (Lindberg et al. 1998), first referred to in
Figure 3.10. The scatterplot here is very much more fuzzy than the two previous plots, and
it would be hard to claim, merely from eyeballing it, that there is any notable association
between the two variables (although admittedly there is some evidence of a rather weak positive
association).

When you set out to investigate a possible association between two variables, a scatterplot
is almost always worthwhile, and will often produce an insight into the way the two variables
co-behave. In particular, it may reveal whether an association between them is linear. The
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Figure 15.1 Scatterplot of the age-standardised incidence rates of Crohn’s disease (CD) and ulcerative
colitis (UC) by Manitoba postal area, Canada, 1987-1996. The scatterplot suggests a positive association
between the two variables. Reproduced from Americal Jnl of Epidemiology 2001, 154: 328-33, Fig. 3
p. 331, by permission of OUP
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Figure 15.2 A scatterplot of percentage mortality from aortic aneurysm, and number of aortic
aneurysm episodes dealt with per year, in 22 hospitals. The plot suggests a negative association between
the two variables. Reproduced from Quality in Health Care, 4, 5-12, courtesy of BMJ Publishing Group

property of linearity is important in some branches of statistics and we’ll meet it again ourselves
in Chapter 17. Put simply, a linear association is one in which the points in the scatterplot seem
to cluster around a straight line. The two scatterplots in Figure 15.4 illustrate the difference
between a linear and a non-linear association. The scatter in Figure 15.4a seems to be linear;
but in Figure 15.4b it shows some curviness.
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Figure 15.3 A scatterplot taken from a cross-section study into the possible contribution of channel
blockers (prescribed for depression) to the suicide rate, in 284 Swedish municipalities. The plot suggests
a weak, if any, relationship between the variables. Reproduced courtesy of BMJ Publishing Group

Exercise 15.1 Draw a scatterplot of Apgar score against birthweight for the 30 maternity-
unit born infants using the data in Table 2.5, and comment on what it shows about any
association between the two variables.

Exercise 15.2 The scatterplot in Figure 15.5 is from a study into the effect of passive
smoking on respiratory symptoms (Janson et al. 2001). In addition, the ‘best’ straight line
has been drawn through the points.! Comment on what the scatterplot suggests about the
nature and strength of any association between the two variables.

Exercise 15.3 The scatterplot of percentage body fat against body mass index (bmi) in
Figure 15.6 is from a cross-section study into the relationship between body mass index
and body fat, in black populations in Nigeria, Jamaica and the USA (Luke et al. 1997).
The aim of the study was to investigate whether per cent body fat rather than bmi could
be used as a measure of obesity. What does the scatterplot tell you about the nature and
strength of any association between these two variables?

P’ have more to say about what constitutes the best straight line in Chapter 17, but loosely speaking, it’s the
line which passes as close as possible to all the points.
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Figure 15.4 (a) A linear association (b) A non-linear association
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Figure 15.5 Scatterplot from a study into the effect of passive smoking on respiratory symptoms.
Reprinted courtesy of Elsevier (The Lancet 2001, 358, 2103-9, Fig. 1, p. 2105)

The correlation coefficient

The principal limitation of the scatterplot in assessing association is that it does not provide
us with a numeric measure of the strength of the association; for this we have to turn to the
correlation coefficient. Two correlation coefficients are widely used: Pearson’s and Spearman’s.

Pearson’s correlation coefficient

Pearson’s product-moment correlation coefficient, denoted p (Greek rho), in the population,
and r in the sample, measures the strength of the linear association between two variables.
Loosely speaking, the correlation coefficient is a measure of the average distance of all of the
points from an imaginary straight line drawn through the scatter of points (analogous to the
standard deviation measuring the average distance of each value from the mean).
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Figure 15.6 Scatterplot of per cent body fat against body mass index from a cross-section study into
the relationship between bmi and body fat, in black population samples from Nigeria, Jamaica and the
USA. Reproduced from Amer. J. Epid., 145, 620-8, courtesy of Oxford University Press

For Pearson’s correlation coefficient to be appropriately used, both variables must be metric
continuous and, if a confidence interval is to be determined, also approximately Normally dis-
tributed. The value of Pearson’s correlation coefficient can vary as follows: from —1, indicating
a perfect negative association (all the points lie exactly on a straight line); through 0, indicating
no association; to +1, indicating perfect positive association (all points exactly on a line). In
practice, with real sample data, you will never see values of —1, 0 or +1. Calculation of r by
hand is very tedious and prone to error, so we will avoid it here. But it can be done in a flash
with a computer statistics program, such as SPSS or Minitab.

Is the correlation coefficient statistically significant in the population?

To assess the statistical significance of a population correlation coefficient and hence decide
whether there is a statistically significant association between the two variables, you can either
perform a hypothesis test (is the p-value less than 0.05?2), or calculate a confidence interval
(does it include zero?). For the hypothesis test, the hypotheses are:

HO: p = 0
HII P 75 0
For example, for the data shown in the scatterplot in Figure 15.1, the sample r = 0.49, with a

p-value < 0.001. This indicates a statistically significant positive association in the population
between incidence rate of Crohn’s disease and ulcerative colitis.
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A useful rule of thumb if you have a value for r but no confidence interval or p-value, is
that to be statistically significant, r must be greater than 24/n, where n is the sample size. For
example, if n = 100, then r has to be greater than 2/10 = 0.200 to be statistically significant.

An example from practice

Table 15.1 is taken from the same cross-section study as Exercise 15.3, and shows the sample
Pearson’s correlation coefficient for the association between bmi and per cent body fat, with
blood pressure, and waist and hip measurements, along with an indication of the statistical
significance or otherwise of the p-value.

Unfortunately, the authors have not given the actual p-values, but only indicated whether
they were less than 0.05 or less than 0.01. This is not good practice; the actual p-values should
always be provided. As you can see, the population correlation coefficient between both bmi
and per cent body fat, with waist and hip circumference, is positive and statistically significant
in every case. However, bmi is more closely associated (higher r values) than body fat, except
in Jamaican men. Apart from the association with systolic blood pressure in US males, there is
no statistically significant association with either of the blood pressure measurements.

Exercise15.4 Table 15.2 is from a case-control study of medical record validation (Olson
et al. 1997), and shows the value of Pearson’s r, and the 98 per cent confidence intervals,
for the correlation between gestational age, as estimated by the mother, and as determined
from medical records, for a number of demographic sub-groups (ignore the last column).
The cases were the mothers of child leukaemia patients, the matched controls were ran-
domly selected by random telephone calling. Identify: (a) any correlation coefficients not
statistically significant; (b) the strongest correlation; (c) the weakest correlation.

Spearman’s rank correlation coefficient

If either (or both) of the variables is ordinal, then Spearman’s rank correlation coefficient (usually
denoted p; in the population and r; in the sample) is appropriate. This is a non-parametric
measure. As with Pearson’s correlation coefficient, Spearman’s correlation coefficient varies
from —1, through 0, to +1, and its statistical significance can again be assessed with a p-value
or a confidence interval. The null hypothesis is that the population correlation coefficient
ps = 0. Spearman’s r; is not quite as bad to calculate by hand as Pearson’s r but bad enough,
and once again you would want to do it with the help of a computer program.

An example from practice

Table 15.3 is from the same cross-section study first referred to in Figure 4.3, into the use of
the Ontario mammography services. The authors wanted to know whether the variation in
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the ranked utilisation rates (number of visits per 1000 women) was similar across the age
groups. They did this by measuring the strength of the association between the ranked rates
for each pair of different age groups. When the association was strong and significant, they
concluded that the variation in the usage rate was similar.

The results show that the r, for the association between the ranked usage rates for 30-39
year-olds, and the 40—49 year-olds, across the 33 districts was 0.6496 (first row of table), with
a p-value of 0.0005. So this association is positive and statistically significant in these two age
group populations. Indeed, the correlation coefficients between all pairs of age groups are
statistically significant, with all p-values < 0.05. The authors thus concluded that variation in

Table 15.2 Pearson’s r and 98 per cent confidence intervals for the association
between gestational age, as estimated by the mother and from medical records, for a
number of demographic sub-groups. Reproduced from Amer. J. Epid., 145, 58-67,
courtesy of Oxford University Press

Correlation of Kappa
gestational age 98% CI* statistic

All gestational ages 0.839 0.817-0.859 0.62
Case/control status

Cases 0.849 0.813-0.878 0.63

Controls 0.835 0.805-0.861 0.61
Education

<High school 0.694 0.553-0.797 0.51

High school 0.833 0.790-0.868 0.63

>High school 0.835 0.804-0.861 0.62
Household income

<$22,000 0.791 0.734-0.837 0.59

$22,000-$ 34,999 0.882 0.849-0.908 0.62

>$35,000 0.843 0.800-0.877 0.65

Unknown 0.745 0.641-0.823 0.60
Time (years) from delivery to interview

<2 0.896 0.862-0.921 0.64

2-3.9 0.821 0.784-0.852 0.63

4-5.9 0.828 0.775-0.869 0.61

6-8 0.852 0.734-0.920 0.42
Maternal age (years)

<25 0.822 0.773-0.861 0.64

25-29 0.889 0.862-0.912 0.63

30-34 0.760 0.694-0.813 0.57

>35 0.888 0.824-0.930 0.64
Birth order

First born 0.880 0.853-0.903 0.67

Second born 0.815 0.778-0.846 0.57

>Third born 0.632 0.416-0.781 0.52
Maternal race

White 0.846 0.822-0.866 0.64

Other 0.782 0.680-0.855 0.42

*CI, confidence Interval.
T Three categories, <38, 38—41, >42 weeks.
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Table 15.3 Spearman correlation coefficients from a cross-section study of the use of
the Ontario mammography services in relation to age. Each correlation coefficient
measures the strength of the association in the variation between the ranked usage rate
across the 33 heath districts for each pair of age groups. Reproduced from J. Epid.
Comm. Health, 51, 378-82, courtesy of BMJ Publishing Group

Age group (y)  30-39y 40-49y 50-69y 70+y
30-39 1.0000  0.6496 (p < 0.0001)  0.5949 (p = 0.0005)  0.5488 (p = 0.0014)
40-49 1.0000 0.9021 (p < 0.0001)  0.8985 (p < 0.0001)
5069 1.0000 0.9513 (p < 0.0001)
70+ 1.0000

usage rate was similar for the four age groups across the 33 health districts. However, whether
association is the correct way to measure similarity in two sets of values is a question I will
return to in the next chapter.

Two other correlation coefficients can only be mentioned briefly. Kendal’s rank-order cor-
relation coefficient, denoted t (tau), is appropriate in the same circumstances as Spearman’s
15, i.e. with ranked data (which may be ordinal or continuous). Tau is available in SPSS, but
not in Minitab. The point-biserial correlation coefficient is appropriate if one variable is metric
continuous and the other is truly dichotomous (which means that the variable can take only
two values; alive or dead, male or female, etc.). Unfortunately, this latter measure of association
is not available in either SPSS or Minitab.

If you plan to use a correlation coefficient you should ensure that the assumptions referred
to above are satisfied, in particular that the association is linear - which can be checked by a
scatterplot. Moreover, with Pearson’s correlation coefficient you should interpret any results
with suspicion if there are outliers present in either data set, since these can distort the results.

Finally it is worth noting again that just because two variables are significantly associated,
does not mean that there is a cause—effect relationship between them.
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Measuring agreement

Learning objectives

When you have finished this chapter you should be able to:
e Explain the difference between association and agreement.

® Describe Cohen’s kappa, calculate its value and assess the level of agreement.

Interpret published values for kappa.

Describe the idea behind ordinal kappa.

Outline the Bland-Altman approach to measuring agreement between metric variables.

To agree or not agree: that is the question

Association is a measure of the inter-connectedness of two variables; the degree to which they
tend to change together, either positively or negatively. Agreement is the degree to which the
values in two sets of data actually agree. To illustrate this idea look at the hypothetical data in
Table 16.1, which shows the decision by a psychiatrist and by a psychiatric social worker (PSW)
whether to section (Y), or not section (N), each of 10 individuals with mental ill-health. We
would say that the two variables were in perfect agreement if every pair of values were the same.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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Table 16.1 Decision by a psychiatrist and a psychiatric social worker
whether or not to section 10 individuals suffering mental ill-health

Patient 1 2 3 4 5 6 7 8 9 10

Psychiatrist Y Y N Y N N N Y Y Y
PSW Y N N Y N N Y Y Y N

In practical situations this won’t happen, and here you can see that only seven out of the 10
decisions are the same, so the observed level of proportional agreement is 0.70 (70 per cent).

Cohen’s kappa

However, if you had asked each clinician simply to toss a coin to make the decision (heads —
section, tails — don’t section), some of their decisions would probably still have been the same —
by chance alone. You need to adjust the observed level of agreement for the proportion you
would have expected to occur by chance alone. This adjustment gives us the chance-corrected
proportional agreement statistic, known as Cohen’s kappa, «:

(proportion of observed agreement — proportion of expected agreement)
K =

(1 — proportion of expected agreement)

We can calculate the expected values using a contingency table in exactly the same way as
we did for chi-squared (row total x column total -~ overall total — see Chapter 14). Table 16.2
shows the data in Table 16.1 expressed in the form of a contingency table, with the psychiatrist’s
scores in the rows, the PSW’s scores in the columns, and with row and column totals added.
The expected values are shown in brackets in each cell.

Table 16.2 Contingency table showing observed (and expected ) decisions by a psychiatrist and
a psychiatric social worker on whether to section 10 patients (data from Figure 16.1)

Psychiatric Social Worker Totals Expected
Yes No — | value:
. Yes 4(3) «—| 2(3) 6 (5x6)/10=3
Psychiatrist No 1) 32 2
Totals 5 5 10

We have seen that the observed agreement is 0.70, and we can calculate the expected agreement
to be 5 out of 10 or 0.50.! Therefore:

k = (0.70 — 0.50)/(1 — 0.50) = 0.20/0.50 = 0.40

! We can expect the two clinicians to agree on ‘Yes’ three times, and ‘No’ two times, making five agreements in
total.
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Table 16.3 How good is the
agreement - assessing kappa

Kappa Strength of agreement

<0.20 Poor
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Good
0.81-1.00 Very good

So after allowing for chance agreements, agreement is reduced from 70 per cent to 40 per cent.
Kappa can vary between zero (agreement no better than chance), and one (perfect agreement),
andyou can use Table 16.3 to asses the quality of agreement. It’s possible to calculate a confidence
interval for kappa, but these will usually be too narrow (except for quite small samples) to add
much insight to your result.

An example from practice

Table 16.4 is from a study into the development of a new quality of life scale for patients
with advanced cancer and their families — the Palliative Care Outcome scale (POS) (Hearn
et al. 1998). It shows agreement between the patient and staff (who also completed the scale
questionnaires) for a number of items on the POS scale. The table also contains values of
Spearman’s 1, and the proportion of agreements within one point on the POS scale. The level
of agreement between staff and patient is either fair or moderate for all items, and agreement
within one point is either good or very good.

Table 16.4 From a palliative care outcome scale (POS) study showing levels of agreement
between the patient and staff assessment for a number of items on the POS scale. Reproduced
from Quality in Health Care, 8, 219-27, courtesy of BMJ Publishing Group

Proportion
No of Patient score  Staff score Spearman agreement
Item patients (% severe) (% severe) K correlation  within 1 score
At first assessment: 145 matched assessments
Pain 140 24.3 20.0 0.56 0.67 0.87
Other symptoms 140 27.2 26.4 0.43 0.60 0.86
Patient anxiety 140 23.6 30.0 0.37 0.56 0.83
Family anxiety 137 49.6 46.0 0.28 0.37 0.72
Information 135 12.6 13.4 0.39 0.36 0.79
Support 135 10.4 14.1 0.22 0.32 0.79
Life worthwhile 133 13.6 16.5 0.43 0.54 0.82
Self worth 132 15.9 23.5 0.37 0.53 0.82
Wasted time 135 5.9 6.7 0.33 0.32 0.95

Personal affairs 129 7.8 13.2 0.42 0.49 0.96
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Table 16.5 Injury Severity Scale (ISS) scores given from case notes by two experienced trauma
clinicians to 16 patients in a major trauma unit. Reproduced from BMJ, 307, 906-9. by
permission of BMJ Publishing Group

Case no.

Observerno. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9 14 29 17 34 17 38 13 29 4 29 25 4 16 25 45
2 9 13 29 17 22 14 45 10 29 4 25 34 9 25 8 50

Exercise 16.1 Do the highest and the lowest levels of agreement in Table 16.4 coincide
with the highest and lowest levels of correlation? Will this always be the case?

Exercise16.2 Table 16.5is from a study in a major trauma unit into the variation between
two experienced trauma clinicians in assessing the degree of injury of 16 patients from
their case notes (Zoltie et al. 1993). The table shows the Injury Severity Scale (ISS) score
awarded to each patient.? Categorise the scores into two groups: ISS scores of less than 16,
and of 16 or more. Express the results in a contingency table, and calculate: (a) the observed
and expected proportional agreement; (b) kappa. Comment on the level of agreement.

A limitation of kappa is that it is sensitive to the proportion of subjects in each category (i.e.
to prevalence), so caution is needed when comparing kappa values from different studies —
these are only helpful if prevalences are similar. Moreover, Cohen’s kappa as described above is
only appropriate for nominal data, as in the sectioning example above, although most data can
be ‘nominalised’, like the ISS values above. In the next paragraph, however, I describe, briefly,
a version of kappa which can handle ordinal data.

Measuring agreement with ordinal data — weighted kappa

Theideabehind weighted kappa is best illustrated by referring back to the data in Table 16.5. The
two clinician’s ISS scores agree for only five patients. So the proportional observed agreement
is only 5/16 = 0.3125 (31.25 per cent). However, in several cases the scores have a ‘near miss’;
patient 2, for example, with scores of 14 and 13. Other pairs of scores are further apart, patient
15 is given scores of 25 and 8! Weighted kappa gives credit for near misses, but its calculation
is too complex for this book.

Measuring the agreement between two metric continuous
variables

When it comes to measuring agreement between two metric continuous variables the obvious
problem is the large number of possible values — it’s quite possible that none of them will be

2The ISS is used for the assessment of severity of injury, with a range from 0 to 75. ISS scores of 16 or above
indicate potentially life-threatening injury, and survival with ISS scores above 51 is considered unlikely.
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the same. One solution is to use a Bland-Altman chart (Bland and Altman 1986). This involves
plotting, for each pair of measurements, the differences between the two scores (on the vertical
axis) against the mean of the two scores (on the horizontal axis).

A pair of tramlines, called the 95 per cent limits of agreement, are drawn a distance of two sg
above and below the zero difference line (where sy = standard deviations of the differences). If

30
20 . The 95 % limits of
£ °e agreement are drawn 2
E 10 ~ T T T 7 T T T T T TV T s.d.s either side of the
E L “ oo o \ zero difference line
8 o o et ien ¢ (s.d. = standard
s o M- N deviation of the
L 10 o e gl s / difference between the
< CIRC A S two measures). ..
P S Y S S
T 20 ¢
-30 ...and for

60 70 80 90 100 110 120
(HP+ABPM)/2 (DBP; mmHg)

reasonable
agreement, most of
the points should lie
between them.

Figure 16.1 A Bland-Altman chart to measure agreement between two metric continuous variables;
diastolic blood pressure as measured by patients at home with a cuff-measuring device (HP), and as
measured by the same patients using an ambulatory device (ABPM). Reproduced from Brit. J. General
Practice, 48, 1585-9, courtesy of the Royal College of General Practitioners
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all of the points on the graph fall between the tramlines, then agreement is ‘acceptable’, but the
more points there are outside the tramlines, the less good the agreement. Moreover the spread
of the points should be reasonably horizontal, indicating that differences are not increasing (or
decreasing) as the values of the two variables increase.

An example from practice

Theideaisillustrated in Figure 16.1, for agreement between two methods of measuring diastolic
blood pressure (Brueren et al. 1998). In this example, there are only a few points outside the
=+ 2 standard deviation tramlines and the spread of points is broadly horizontal. We would
assess this chart as suggesting reasonably good agreement between the two methods of blood
pressure measurement.

The continuous horizontal line across the middle of the chart represents the mean of the
differences between the two measures. Note that this is below the zero mark indicating some
bias in the measures. It looks as if the ABPM values are greater on the whole than the HP values.

To sum up, two variables that are in reasonable agreement will be strongly associated, but
the opposite is not necessarily true. The two measures are not equivalent; association does not
measure agreement.
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Getting into a Relationship
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Straight line models:
linear regression

Learning objectives

When you have finished this chapter you should be able to:

Describe the difference between an association and a cause-and-effect relationship.

Estimate the equation of a straight line from a graph, and draw a straight line knowing
its equation.

Describe what is meant by a linear relationship and how the linear regression equation
can be used to model it.

Identify the constant and slope parameters, and the dependent and independent
variables.

Explain the role of the residual term.
Summarise the model building process.

Provide a brief explanation of the idea behind the method of ordinary least squares
estimation.

List the basic assumptions of the simple linear regression model.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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e Interpret computer-generated linear regression results.

e Explain what goodness-of-fit is and how it is measured in the simple linear regression
model.

e Explain the role of R? in the context of multiple linear regression.
e Interpret published multiple linear regression results.
® Explain the adjustment properties of the regression model.

® (Qutline how the basic assumptions can be checked graphically.

Health warning!

Although the maths underlying the idea of linear regression is a little complicated, some
explanation of the idea is necessary if you are to gain any understanding of the procedure and
be able to interpret regression computer outputs sensibly. I have tried to keep the discussion as
brief and as non-technical as possible, but if you have an aversion to maths you might want to
skim the material in the next few pages.

Relationship and association

In Chapter 15, I emphasised the fact that an association between two variables does not mean
that there is a cause-and-effect relationship between them. For example, body mass index and
systolic blood pressure may appear to be closely associated, but this does necessarily mean that
an increase in body mass index will cause a corresponding increase in systolic blood pressure
(or indeed the other way round). In this chapter and the next, I am going to deal with the idea
of a causal relationship between variables, such that changes in the value of one variable bring
about or cause changes in the value of another variable. Or to put it another way, variation
among a group of individuals in say their blood pressure is caused, or explained, by the variation
among those same individuals in their body mass index.

In the clinical world demonstrating a cause—effect relationship is difficult, and requires a
number of conditions to be satisfied; the relationship should be plausible, repeatable, pre-
dictable, with a proved mechanism, and so on. I will assume in the remainder of this chapter
that a cause-effect relationship between the variables has been satisfactorily demonstrated, and
that this relationship is linear (see pp. 172/3 for an explanation of linearity).

A causal relationship - explaining variation

Let’s begin with a simple example. Suppose that systolic blood pressure (SBP), in mmHg, is
effected by body mass index (bmi) in kg/m?, and the two variables are related by the following
expression:

SBP equals 110 plus 3/4 of bmi
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Figure 17.1 A plot of systolic blood pressure (SBP) against body mass index (bmi) produces a straight
line, and shows that the relationship between the two variables is linear

So for example, when bmi = 40, SBP equals 110 plus 3/4 of 40, or 110 plus 30, which equals
140. This equation is a linear equation. If you plot it with pairs of values of bmi and SBP,
you will see a straight line. For instance, when bmi = 24, SBP = 128, and when bmi = 32,
SBP = 134. We already know that when bmi = 40, SBP = 140, and if we plot these three
pairs of values, and draw a line through them, we get Figure 17.1. This is clearly a straight
line.

We can write the above expression more mathematically as an equation:

SBP = 110 + 0.75 x bmi

This equation explains the variation in systolic blood pressure from person to person, in terms
of corresponding variation from person to person in body mass index. I have referred to this
relationship as an equation, but I could also have described it as a model. We are modelling
the variation in systolic blood pressure in terms of corresponding variation in body mass
index. We can write this equation in a more general form in terms of two variables Yand X,
thus:!

Y=by+b X

The term by is known as the constant coefficient, or the coefficient of intersection — it’s where
the line cuts the Yaxis (110 in our Figure 17.1). The term b, is known as the slope coefficient,
(0.75 in our equation), and will be positive if the line slopes upwards from left to right (as in
Figure 17.1), and negative if the line slopes down from left to right (as in Figure 15.2). Higher
values of b; means more steeply sloped lines. One important point: the value of b; (4 0.75 in
the example) is the amount by which SBP would change if the value of bmi increased by 1 unit.
I’ll come back to this later.

"You may remember this from school as: y = mx + ¢, or some other variation.
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Figure 17.2 A scatterplot of body mass index against hip circumference, for a sample of 412 women

in a diet and health cohort study. The scatter of values appears to be distributed around a straight line.
That is, the relationship between these two variables appears to be broadly linear

Exercise 17.1 Plot the following values for the variables X and Y on a scatter plot and
draw the straight line through the points. What is the equation of this line?

The linear regression model

In Figure 17.1 all of the points lie exactly on the straight line. In practice this won’t happen, and
the scatterplot in Figure 17.2 is more typical of what you might see. Here we have body mass
index, bmi, (in kg/m?), and hip circumference, HIP (cm), for a sample of 412 British women
from a study into the relationship between diet and health. Suppose we believe that there is
a causal relationship between bmi and HIP — changes in hip measurement lead to changes in
bmi. If we want to investigate the nature of this relationship then we need to do three things,
which I'll deal with in turn:

® Make sure that the relationship is linear.”
® Find a way to determine the equation linking the variables, i.e. get the values of by and b,.

® See if the relationship is statistically significant, i.e. that it is present in the population.

% Because we are only dealing with linear relationships in this chapter.
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Is the relationship linear?

One way of investigating the linearity of the relationship is to examine the scatterplot, such as
that in Figure 17.2.

The points in the scatterplot do seem to cluster along a straight line (shown dotted), which
I have drawn, ‘by eye’, through the scatter. This suggests a linear relationship between bmi and
HIP. So far, so good. We can write the equation of this straight line as:

bmi = by + b; x HIP

This equation is known as the sample regression equation. The variable on the left-hand side of
the equation, bmi, is known variously as the outcome, response or dependent variable. 'm going
to refer to it as the dependent variable in this chapter. It must be metric continuous. It gives us
the mean value of bmi for any specified HIP measurement. In other words, it would tell us (if
we knew by and by) what the mean body mass index would be for all those women with some
particular hip measurement.

The variable on the right-hand side of the equation, HIP, is known variously as the predictor,
explanatory or independent variable, or the covariate. I will use the term independent variable
here. The independent variable can be of any type: nominal, ordinal or metric. This is the
variable that’s doing the ‘causing’ It is changes in hip circumference that cause body mass index
to change in response, but not the other way round.

Incidentally, my ‘by eye’ line has the equation:

bmi = —8.4 4 0.33 x HIP

This means that the mean body mass index of all the women with, say, HIP = 100 cm in this
sample is equal to 24.6 kg/m?.

Clearly drawing a line by eye through a scatter is not satisfactory — ten people would get
ten different lines. So the obvious question arises, ‘What is the ‘best’ straight line that can be
“drawn” through a scatter of sample values, and how do I find out what it is?’

Exercise 17.2 (a) Draw by eye the best straight line you can through the scatterplot
in Figure 15.1, and write down the regression equation. By how much would the mean
incidence rate of ulcerative colitis (UC) change if the rate of Crohn’s disease (CD) changed
by one unit? (b) Draw, by eye, the best straight line you can through the scatterplot in
Figure 15.2, and write down the regression equation. What change in mean percentage
mortality would you expect if the mean number of episodes per year increased by 1? (c)
What is the equation of the regression line shown in Figure 15.5? What value of mean per
cent exposed at work would you expect if per cent of current smokers in a workplace was
35 per cent?

Estimating by and b; - the method of ordinary least squares (OLS)

The second problem is to find a method of getting the values of the sample coefficients by and
by, which will give us a line that fits the scatter of points better than any other line, and which
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will then enable us to write down the equation linking the variables. The most popular method
used for this calculation is called ordinary least squares, or OLS. This gives us the values of by
and by, and the straight line that best fits the sample data. Roughly speaking, ‘best’ means the
line that is, on average, closer to all of the points than any other line. How does it do this?
Look back at Figure 17.2. The distance of each point in the scatter from the regression line
is known as the residual or error, denoted e. I have shown the e for just one of the points.
If all of these residuals are squared and then added together, to give the term ¢, then the
‘best’ straight line is the one for which the sum, ¢, is smallest. Hence the name ordinary
‘least squares.

Now: the calculations involved with OLS are too tedious to do by hand, but you can use
a suitable computer program to derive their values quite easily (both SPSS and Minitab will
do this). It is important to note that the sample regression coefficients by and b; are estimates
of the population regression coefficients 8o and B;. In other words, we are using the sample
regression equation:

Y=by+b X
to estimate the population regression equation:

Y=08+psX

Basic assumptions of the ordinary least squares procedure

The ordinary least squares procedure is only guaranteed to produce the line that best fits the
data if the following assumptions are satisfied:

® The relationship between Yand X s linear.
® The dependent variable Y'is metric continuous.

® The residual term, e, is Normally distributed, with a mean of zero, for each value of the
independent variable, X.

® The spread of the residual terms should be the same, whatever the value of X. In other words,
e shouldn’t spread out more (or less) when X increases.

Let me explain the last two assumptions. Suppose you had, say, 50 women with a hip circum-
ference of 100 cm. As the scatterplot in Figure 17.2 indicates, most of these women have a
different body mass index. As you have seen, the difference between each individual woman’s
bmi and the regression line is the residual e. If you arranged these 50 residual values into a
frequency distribution then the third assumption stipulates that this distribution should be
Normal.

The fourth assumption demands that if you repeated the above exercise for each separate
value of hip circumference, then the spreads (the standard deviations) of each distribution of

3 Known as the sum of squares. ¥ is the Greek ‘sigma, which means sum all the values.



THE LINEAR REGRESSION MODEL 195

residual values should be the same, for all hip sizes. If the residual terms have this latter property
then they are said to be homoskedastic.

These assumptions may seem complicated, but the consequences for the accuracy of the
ordinary least squares estimators may be serious if they are violated. Needless to say, these
assumptions need to be checked. I'll return to this later.

Back to the example - is the relationship statistically significant?

Having calculated b; and b,, we now need to address the third question; is the relationship
statistically significant in the population? We can use either confidence intervals for 8, and 8,
or hypothesis tests, to judge statistical significance. We then ask: ‘Does the confidence interval
for B, include zero (or is its p value > 0.05)? If the answer in either case is yes, then you can’t
reject the null hypothesis that 8 is equal to zero; which means that the relationship is not
statistically significant. Whatever the value of HIP, once multiplied by a b, equal to zero, it
disappears from the regression equation and can have no effect on bmi.

SPSS and Minitab for example, will give you confidence intervals and/or p values. In practice
we have very little interest in the constant coefficient fo; it’s only there to keep a mathematical
equality between the left- and right-hand sides of the equation. Besides, in reality it often has
no sensible interpretation. For example, in the current example, 8, would equal the body mass
index of individuals with a hip circumference equal to zero!

Thus the focus in linear regression analysis is to use b; to estimate 8;, and then examine its
statistical significance. If 8, is statistically significant, then the relationship is established (well
at least with a confidence level of 95 per cent).

Using SPSS

If you use the SPSS linear regression program with the data on the 412 women in Figure 17.2,
you will get the output shown in Figure 17.3. SPSS provides both a p value and a 95 per cent
confidence interval.

95 % confidence
intervals for b,

Estimated
b, value.

Estimated

Pval for
b, value. aues

b, and by.

Coefficients
nstandardized Standardized ? si 95% Confidence
oefficients Coefficients 9- for B
B Ig'tr%r Beta Lower Bound Uppger Bound
(Constant) -10.74 1.347 -7.980\.000 -13.396 —8.101
hip size (cm) .351 .014 .784 25.556 .000 324 377

a Dependent Variable: Body Mass Index (weight/height*2) (kg/m2)
R%=0.614; R?>=0.613".

"Values for R2 amd R~2 appear in a separate table in the SPSS output. For convenience | have copied them
to this table. See below for comment on R2.

Figure 17.3  Output from SPSS for ordinary least squares regression applied to the body mass index/hip
circumference example
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Using Minitab

With Minitab you get the output shown in Figure 17.4. Minitab calculates only the p value,
otherwise the results are the same as for SPSS.

Regression Analysis: bmi versus hip (cm)

The sample
regression
equation.

The sample
values of by
and b;.

The regression equation is

bmi =-10.7 + 0.351 hip (cm)

412 cases used 88 cases contain missing va

Predictor Coef Coe T P The p values
Constant -10.749 347 -7.98 0.000 for by and b,.
hip (cm) 0.35053 0.01372 25.56 0.000

S=2.284 R-Sq=61.4% R-Sq(adj) = 61.3%

Figure 17.4 Output from Minitab for ordinary least squares regression applied to the body mass
index/hip circumference example

Between them, Figure 17.3 and Figure 17.4 provide us with the estimates of by and by, their
95 per cent confidence intervals and their p values, along with the value of R? (see below).
Regression results are often summarised in a table such as that in Table 17.1.

Table 17.1 Summary of results from the regression of BMI on HIP

Dependent Estimated
variable Coefficient value (95 % CI) (p-value) R? R?
BMI by 10748 (—13.396 to —8.101) 0.000

b, 0.351 (0.324 t0 0.377) 0.000 61.4% 61.3%

The 95 per cent confidence interval and the pvalue is shown alongside each sample coefficient.
Both parameters 8 and ; are statistically significant, since neither confidence interval includes
zero, and both p values are less than 0.05. Thus the result of this analysis is that bmi and HIP
are statistically significantly related through the linear regression equation:

bmi = —10.7 4 0.351 x HIP*

The value of +0.351 for b; means that for every unit (1 cm) increase in hip circumference,
the mean bmi will increase by 0.351 kg/m?. Knowing the equation, you can, if you wish, draw
this best OLS estimated regression line onto the scatterplot.

The regression equation also enables us to predict the value of the mean bmi, for any value of
hip circumference, within the range of the sample hip circumference values (71 cm to 140 cm).
For example, for individuals with a hip circumference of 100 cm, you can substitute HIP = 100

* Compare with the by-eye line of: bmi = —8.4 + 0.33HIP.
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into the sample regression equation and thus calculate a value for mean bmi of 24.4 kg/m?.
Prediction of bmi for hip circumference values outside the original sample data range requires
a more complex procedure, and will not be discussed here.

Exercise 17.3 What does the model predict for mean bmi for women with a hip circum-
ference of 130 cm?

Goodness-of-fit — R?

Figure 17.3, Figure 17.4, and Table 17.1, contain values for something called R?, and R? (SPSS
calls the latter ‘R-Sq(adj)’). What are these? Suppose you think that waist circumference, WST,
might be used as a measure of obesity, so you repeat the above procedure, but use WST as your
independent variable instead of HIP. Your results indicate that b, is again statistically signifi-
cant. Now you have two models, in both of which the independent variable has a statistically
significant linear relationship with bmi. But which model is best? The one with HIP or the one
with WST?

In fact, the best model is the one that ‘explains’ the greatest proportion of the observed
variation in bmi from subject to subject, that is, has the best goodness-of-fit. One such measure
of this explanatory power is known as the coefficient of determination, and is denoted R*.

Asamatter of interest, R* = 0.614, or 61.4 per cent, for the hip circumference model, and R* =
0.501, or 50.1 per cent, for the waist circumference model. So variation in hip circumference
explains 61 per cent of the observed variation in bmi, while variation in waist circumference
explains only 50 per cent of the variation. So using hip circumference as your independent
variable gives you a better fitting model.

Here’s a thought. If only 61 per cent of the variation in bmi is explained by variation in hip
circumference, what is the remaining 39 per cent explained by? One possibility is that the rest is
due to chance, to random effects. A more likely possibility is that, as well as hip circumference,
there are other variables that contribute something to the variation in bmi from subject to
subject. It would be naive to believe that variation in bmi, or any clinical variable, can be totally
explained by only one variable. Which brings us neatly to the multiplelinear regression model.

Multiple linear regression

A simple linear regression model is one with only one independent variable on the right-hand
side. When you have more than one independent variable the regression model is called a mul-
tiple linear regression model. For example, having noticed that both hip and waist circumference
are each significantly related to bmi, you might include them bothas independent variables. This
gives the following model, which now gives us mean bmi for the various possible combinations
of sample values of both HIP and WST:

bm1=b0+b1 XHIP+b2XWST
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Estimated

Variable coefficient (95 % CI) (p-value) R? R?
Model (& constant b= —10.748 (—13.396 to —8.101) 0.000
dependent
variable)
1. BMI HIP b; =0.351 (0.324 t0 0.377) 0.000 61.4% 61.3%
2. BMI constant by = —9.645 (—12.250 to —7.041)  0.000

HIP b; =0.261 (0.219 to 0.303) 0.000

WST b, =0.105 (0.065 to 0.144) 0.000 63.7% 63.5%

Figure 17.5 Multiple linear regression output (last three rows) from SPSS for model with body mass
index as the dependent variable and both hip and waist circumferences as independent variables

Note that when we move from the simple to the multiple linear regression model, we need to
add a further basic assumption to the list on p. 194. That is, that there is no perfect association
or collinearity between any of the independent variables. When this assumption is not met, we
refer to the model as having multicollinearity. The consequence of this condition is wide and
thus imprecise confidence intervals.

If you use SPPS to derive the OLS estimators of the above model containing both HIP and
WST you get the output shown in Figure 17.5 (last three rows).

Using these results, we can write the estimated multiple linear regression model as:

bmi = —9.645 4 0.261 x HIP + 0.105 x WST

So for example, for all of those women in the sample for whom HIP = 100 and WST = 75,
then the above equation estimates their mean bmi to be:

bmi = —9.645 + 0.261 x 100 4 0.105 x 75 = 24.330

The other information in Figure 17.5 tells us that parameters 8, and B, are both statistically
significant as neither confidence interval includes zero. Compared to the simple regression
model containing only HIP as an independent variable, goodness of fit has improved marginally,
with R? increasing from 61.4 per cent to 63.7 per cent. Note that in the multiple linear regression
model, R* measures the explanatory power with all of the variables currently in the model acting
together.

Exercise 17.4 If we add ‘age’ as a third independent variable to the bmi model, then
Minitab produces the results shown in Figure 17.6. (a) Comment on the statistical sig-
nificance of the three independent variables. (b) How does an increase in age effect mean
body mass index values? (c) Has goodness of fit improved compared to the model with
only HIP and WST included? (d) What is the mean body mass index of all of those women
in the sample with a hip circumference of 100 cm, and a waist circumference of 75 cm,
who are aged: (i) 30; (ii) 60?
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Regression Analysis : BMI versus hip(cm), waist(cm), Age

The regression equation is

BMI = - 12.4 + 0.289 hip(cm) + 0.125 waist(cm) - 0.0249 Age
Predictor Coef SE Coef T P

Constant -12.425 1.353 -9.18 0.000

Hip (cm) 0.28876 0.02041 14.15 0.000

Waist (cm) 0.12549 0.01762 7.12 0.000

Age -0.02492 0.01104 -2.26 0.024

S = 2.24817 R-Sq = 64.0% R-Sg(adj) = 63.8%

Figure 17.6 Output from Minitab for regression of bmi on HIP, WST and AGE

Dealing with nominal independent variables: design variables
and coding

In linear regression, most of the independent variables are likely to be metric, or at least ordinal.
However any independent variable that is nominal must be coded into a so-called design (or
dummy) variable, before being entered into a model. There is only space for a brief description
of the process here.

As an example, suppose in a study of hypertension, you have systolic blood pressure (SBP)
as your dependent variable, and age (AGE) and smoking status (SMK), as your independent
variables. SMK, is a nominal variable, having the categories: non-smoker, ex-smoker, and
current smoker. This gives the model:

SBP = by + b;AGE + b,SMK (1)

To enter SMK into your computer, you would have to score the three smoking categories in
some way — but how? As 1, 2, 3, or as 0, 1, 2, etc. As you can imagine, the scores you attribute
to each category will effect your results. The answer is to code these three categories into two
design variables. Note that the number of design variables is always one less than the number
of categories in the variable being coded. In this example, we set out the coding design as in
Table 17.2.

So you replace smoking status (with its dodgy numbering), with two new design variables,
D, and D,, which take the values in Table 17.2, according to smoking status. The model now

Table 17.2 Coding design for a nominal
variable with three categories

Design variable values

Smoking status D D,
Non-smoker 0 0
Ex-smoker 0 1

Current smoker 1 0
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becomes: Y = by + bjAge + b,D; +b;3D,. For example, if the subject is a current smoker,
D; =1 and D, = 0; if an ex-smoker, D; = 0 and D, = 1; if a non-smoker, D; = 0 and D, =
0. Notice in the last situation that the smoking status variable effectively disappears from the
model.

This coding scheme can be extended to deal with nominal variables with any reasonable
number of categories, depending on the sample size.> The simplest situation is a nominal
variable with only two categories, such as sex, which can be represented by one design variable
with values 0 (if male) or 1 (if female).

Exercise 17.5 The first three subjects in the study of systolic blood pressure and its
relationship with age and smoking status are, a 50-year-old smoker, a 55-year-old non-
smoker and a 35-year-old ex-smoker, respectively. Fill in the first three rows of the data
sheet shown in Table 17.3, as appropriate.

Table 17.3 Data sheet for systolic blood
pressure relationship

Subject Age D, D,

1

Model building and variable selection

At the beginning of this chapter we chose body mass index as the variable to explain or model
systolic blood pressure. In practice, researchers may or may not have an idea about which
variables they think are relevant in explaining the variation in their dependent variable. Whether
they do or they don’t will influence their decision as to which variables to include in their model,
i.e. their variable selection procedure.

There are two main approaches to the model-building process:

® First, automated variable selection — the computer does it for you. This approach is perhaps
more appropriate if you have little idea about which variables are likely to be relevant in the
relationship.

® Second, manual selection — you do it! This approach is more appropriate if you have a
particular hypothesis to test, in which case you will have a pretty good idea which independent

5 As a rule of thumb, you need at the very least 15 subjects for each independent variable in your model. If you've
got, say, five ordinal and/or metric independent variables in your model, you would need a minimum of 75
subjects. If you want also to include a single nominal variable with five categories (i.e. four design variables),
you would need another 60 subjects. In these circumstances, it might help to amalgamate some categories.
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variable is likely to be the most relevant in explaining your dependent variable. However,
you will almost certainly want to include other variables to control for confounding (see
p. 81 for an account of confounding).

Both of these methods have a common starting procedure, as follows:®

e Identify a list of independent variables that you think might possibly have some role in
explaining the variation in your dependent variable. Be as broad-minded as possible here.

® Draw a scatterplot of each of these candidate variables (if it is not a nominal variable), against
the dependent variable. Examine for linearity. If any of the scatterplots show a strong, but
not a linear relationship with the dependent variable, you will need to code them first before
entering them into the computer data sheet. For example, you might find that the relationship
between the dependent variable and ‘age’ is strong but not linear. One approach is to group
the age values into four groups, using its three quartile values to define the group boundaries,
and then code the groups with three design variables.

® Perform a series of univariate regressions, i.e. regress each candidate independent variable
in turn against the dependent variable. Note the p-value in each case.

o Atthisstage, all variables that have a p-value of atleast 0.2 should be considered for inclusion in
the model. Using a p-value less than this may fail to identify variables that could subsequently
turn out to be important in the final model.

With this common starting procedure out of the way, we can briefly describe the two variable
selection approaches, starting with automated methods.

Automated variable selection methods

® Forwards selection: The program starts with the variable that has the lowest p-value from the
univariate regressions. It then adds the other variables one at a time, in lowest p-value order,
regressing each time, retaining all variables with p-values < 0.05 in the model.

® Backwards selection: The reverse of forwards selection. The program starts with all of the
candidate variables in the model, then the variable that has highest p-value > 0.05, is removed.
Then the next highest p-value variable, and so on, until only those variables with a p-value
< 0.05 are left in the model, and all other variables have been discarded.

® Forwards or backwards stepwise selection: After each variable is added (or removed), the vari-
ables which were already (or are left) in the model are re-checked for statistical significance;
if no longer significant they are removed. The end result is a model where all variables have
a p-value < 0.05.

©Note that the criteria used by the different computer regression programs to select and de-select variables
differ.
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These automated procedures have a number of disadvantages, although they may be useful
when researchers have little idea about which variables are likely to be relevant. As an example
of the automated approach, the authors of a study into the role of arginase in sickle cell disease,
in which the outcome variable was log; arginase activity (Morris et al. 2005), comment:

This modelling used a stepwise procedure to add independent variables, beginning
with the variables most strongly associated with log;parginase with P < 0.15. Deletion
of variables after initial inclusion in the model was allowed. The procedure continued
until all independent variables in the final model had P < 0.05, adjusted for other
independent variables, and no additional variables had P < 0.05.

Manual variable selection methods

Manual, DIY methods, are often more appropriate if the investigators know in advance which
is likely to be their principal independent variable. They will include this variable in the model,
together with any other variables that they think may be potential confounders. The identity of
potential confounders will have been established by experience, a literature search, discussions
with colleagues and patients and so on. There are two alternative manual selection procedures:

® Backward elimination: The main variable plus all of the potentially confounding variables are
entered into the model at the start. The results will then reveal which variables are statistically
significant (p-value < 0.05). Non-significant variables can then be dropped, one at a time in
decreasing p-value order, from the model, regressing each time. However, if the coefficient
of any of the remaining variables changes markedly” when a variable is dropped, the variable
should be retained, since this may indicate that it is a confounder.

® Forward elimination: The main explanatory variable of interest is put in the model, and the
other (confounding) variables are added one at a time in order of (lowest) p-value (from
the univariate regressions). The regression repeated each time a variable is added. If the
added variable is statistically significant it is retained, if not it is dropped, unless any of the
coefficients of the existing variables change noticeably, suggesting that the new variable may
be a confounder.

The end result of either of these manual approaches should be a model containing the same
variables (although this model may differ from a model derived using one of the automated
procedures). In any case, the overall objective is parsimony, i.e. having as few explanatory
variables in the model as possible, while at the same time explaining the maximum amount
of variation in the dependent variable. Parsimony is particularly important when sample size
is on the small side. As a rule of thumb, researchers will need at least 15 observations for each
independent variable to ensure mathematical stability, and at least 20 observations to obtain
reasonable statistical reliability (e.g. narrow-ish confidence intervals).

As an example of the manual backwards selection approach, the authors of a study of
birthweight and cord serum EPA concentration (Grandjean et al. 2000), knew that cord serum

7 There is no rule about how big a change in a coefficient should be considered noteworthy. A value of 10 per
cent has been suggested, but this seems on the small side.
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EPA was their principal independent variable, and but wanted to include possible confounders
in their model. They commented:

Multiple regression analysis was used to determine the relevant importance of pre-
dictors of the outcome (variable). Potential confounders were identified on the basis
of previous studies, and included maternal height and weight, smoking during preg-
nancy, diabetes, parity, gestational length, and sex of the child. Covariates® were kept
in the final regression equation if statistically significant (p < 0.01) after backwards
elimination.

Incidentally, the main independent variable, cord serum concentration, was found to be
statistically significant (p-value = 0.037), as were all of the confounding variables.

Goodness-of-fit again: R?

When you add an extra variable to an existing model, and want to compare goodness-of-fit
with the old model, you need to compare not R?, but adjusted R*, denoted R*. The reasons
don’t need to concern us here, but R? will increase when an extra independent variable is added
to the model, without there necessarily being any increase in explanatory power. However, if R?
increases, then you know that the explanatory power (its ability to explain more of the variation
in the dependent variable) of the model has increased. From Figure 17.3 or Figure 17.4, R? =
0.613 in the simple regression model with only hip circumference as an independent variable.
From Figure 17.5, with both hip and waist circumferences included, R? increases to 0.635, so
this multiple regression model does show a small but real improvement in goodness-of-fit, and
would be preferred to either of the simple regression models. Of course, you might decide to
explore the possibility that other independent variables might also have a significant role to
play in explaining variation in body mass index; age is one obvious contender, as is sex, and
should be included in the model.

Exercise 17.6 Table 17.4 contains the results of a multiple linear regression model from
a cross-section study of disability, among 1971 adults aged 65 and over in 1986 (Kavanagh
and Knapp 1998). The objective of the study was to examine the utilisation rates of general
practitioners’ time by elderly people resident in communal establishments. The dependent
variable was the natural log of weekly utilisation (minutes) per resident.” There were 10
independent variables, as shown in the figure.

(a) Identify those independent variables whose relationship with the dependent variable
is statistically significant. (b) What is the effect on the natural log of utilisation time, and
what is this in actual minutes, if there is an increase of: (i) one person in the number in a

8i.e. independent variables.

9 Probably because the researchers believed the utilisation rate to be skewed. See Figure 5.6 for an example of
transformed data.
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private residential home; (ii) one unit in the severity of disability score? (c¢) How much of
the variation in general practitioners’ utilisation time is explained by the variation in the
independent variables?

Table 17.4 Sample regression coefficients from a linear regression model,
where the dependent variable is the natural log of the utilisation time (minutes)
of GPs, by elderly patients in residential care. The independent variables are as
shown. Reproduced from BMJ, 317, 322-7, courtesy of BMJ Publishing Group

Explanatory variable B coefficient (SE) P value
Constant 0.073 (0.353) 0.837
Age <0.0005 (0.004) 0.923
Male sex 0.024 (0.060) 0.685
Severity of disability 0.043 (0.005) <0.0001
Mental disorders 0.120 (0.061) 0.047
Nervous system disorders 0.116 (0.062) 0.063
Circulatory system disorders 0.122 (0.066) 0.063
Respiratory system disorders 0.336 (0.115) 0.003
Digestive system disorders 0.057 (0.070) 0.415

Type of accommodation:
Local authority — —

Voluntary residential home —0.084 (0.183) 0.649
Voluntary nursing home 0.562 (0.320) 0.079
Private residential home —0.173 (0.157) 0.272
Private nursing home 0.443 (0.228) 0.053
Size of establishment (No of residents)
Local authority —0.004 (0.003) 0.170
Voluntary residential home —0.004 (0.002) 0.069
Voluntary nursing home —0.002 (0.002) 0.245
Private residential home 0.006 (0.002) 0.017
Private nursing home —0.007 (0.007) 0.362

R? =0.1098, F(17,415) = 9.71, P= <0.0001. Sample size = 1971 in 433 sampling units.
Adjustment and confounding

One of the most attractive features of the multiple regression model is its ability to adjust for the
effects of possible association between the independent variables. It’s quite possible that two or
more of the independent variables will be associated. For example, hip (HIP) and waist (WST)
circumference are significantly positively associated with r = +0.783 and p-value = 0.000. The
consequence of such association is that increases in HIP are likely to be accompanied by increases
in WST. The increase in HIP will cause bmi to increase both directly, but also indirectly via
WST. In these circumstances it’s difficult to tell how much of the increase in bmi is due directly
to an increase in HIP, and how much to the indirect effect of an associated increase in WST.
The beauty of the multiple regression model is that each regression coefficient measures only
the direct effect of its independent variable on the dependent variable, and controls or adjusts
for any possible interaction from any of the other variables in the model. In terms of the results in
Figure 17.5, an increase in HIP of 1 cm will cause mean bmi to increase by 0.261 kg/m? (the value
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of by), and all of this increase is caused by the change in hip circumference (plus the inevitable
random error). Any effect that a concomitant change in waist circumference might have is
discounted. The same applies to the value of -0.0249 for b; on the ‘age’ variable in Figure 17.6.

We can use the adjustment property to deal with confounders in just the same way. You
will recall that a confounding variable has to be associated with both one of the independent
variables andthe dependent variable (see the discussion in Chapter 6). Notice that the coefficient
b;, which was 0.351 in the simple regression model with HIP the only independent variable,
decreases to 0.261 with two independent variables. A marked change like this in the coefficient
of a variable already in the model when a new variable is added, is an indication that one of
the variables is possibly a confounder. As you have already seen in the model-building section
above, in these circumstances both variables should be retained in the model.

An example from practice

Table 17.5 is from a cross-section study into the relationship between bone lead and blood lead
levels, and the development of hypertension in 512 individuals selected from a cohort study
(Cheng et al. 2001). The table shows the outcome from three multiple linear regression models
with systolic blood pressure as the dependent variable. The first model includes blood lead
as an independent variable, along with six possible confounding variables.! The second and
third models were the same as the first model, except tibia and patella lead, respectively, were
substituted for blood lead. The results include 95 per cent confidence intervals and the R? for
each model.

As the table shows, the tibia lead model has the best goodness-of-fit (R = 0.1015), but
even this model only explains 10 per cent of the observed variation in systolic blood pressure.
However, this is the only model that supports the relationship between hypertension and lead
levels; the 95 per cent confidence interval for tibia lead (0.02 to 2.73) does not include zero.
The only confounders statistically significant in all three models are age, family history of
hypertension and calcium intake.

Exercise 17.7 From the results in Table 17.5: (a) which independent variables are statis-
tically significant in all three models? (b) Explain the 95 per cent confidence interval of
(0.28 to 0.64) for age in the blood lead model. (¢) In which model does a unit (1 year)
increase in age change systolic blood pressure the most?

Diagnostics - checking the basic assumptions of the multiple linear
regression model

The ordinary least squares method of coefficient estimation will only produce the best es-
timators if the basic assumptions of the model are satisfied. That is: a metric continuous

19 The inclusion of Age? in the model is probably an attempt to establish the linearity of the relationship between
systolic blood pressure and age. If the coefficient for Age? is not statistically significant then the relationship
is probably linear.
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dependent variable; a linear relationship between the dependent and each independent vari-
able; error terms with constant spread and Normally distributed; and the independent vari-
ables not perfectly correlated with each other. How can we check that these assumptions are
satisfied?

® A metric continuous dependent variable. Refer to Chapter 1 if you are unsure how to identify
a metric continuous variable.

® A linear relationship between the dependent variable and each independent variable. Easiest to
investigate by plotting the dependent variable against each of the independent variables; the
scatter should lie approximately around a straight line.!* The other possibility is to plot the
residual values against the fitted values of the independent variable (bmi in our example).
These are the values the estimated regression equation would give for mean bmi, for every
combination of values of HIP and WST. The scatter should be evenly spread around zero,
with no discernible pattern, such as in Figure 17.7(a).

® The residuals have constant spread across the range of values of the independent variable. Check
with a plot of the residual values against the fitted values of bmi. The spread of the residuals
should be fairly constant around the zero value, across the range of fitted values of the
independent variable. Figure 17.7(b) is an example of non-constant variance. The spread
appears to increase as the value of the independent variable increases. Figure 17.7(c) is an
example of both non-linearity and non-constant variance.

® The residuals are Normally distributed for each fitted value of the independent variable. This
assumption can be checked with a histogram of the residuals. For our bmi example, the
histogram in Figure 17.10 indicates that, apart from a rather worrying outlier, the distribution
is Normal. You might want to identify which woman this outlier represents and check her
data for anomalies.

® The independent variables are not perfectly correlated with each other. Unfortunately, this is
not an easy assumption to check. Some degree of correlation is almost certain to exist among
some of the independent variables.

Exercise 17.8 (a) Explain briefly each of the basic assumptions of the multiple linear
regression model. (b) With the aid of sketches where appropriate, explain how we can test
that these assumptions are satisfied.

Notice that we only have to establish this property of linearity for the metric independent variables in the
model. Any binary variables are linear by default — they only have two points, which can be joined with a
straight line. Any ordinal independent variables will have to be expressed as binary dummies — again linear by
default for the same reason.
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Figure 17.7 Testing the basic assumptions of the linear regression model by plotting the residuals
against the fitted values of the regression equation

An example from practice

Let’s apply the above ideas to check the basic assumptions of the ordinary least squares method
as applied to the multiple linear regression of body mass index (bmi) on hip circumference
(HIP) and waist circumference (WST'), which we considered earlier. Recall that the model was:

bm1=b0+b1 XHIP+b2 x WST

and that both HIP and WST were found to be statistically significant explainers of the variation
in bmi.
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The first assumption is that bmi is a metric continuous dependent variable, which it is. The
second assumption is that the relationship between bmi and HIP and bmi and WST should
be linear. If we draw a scatterplot of bmi against each of these variables, we get the scatterplots
shown in Figure 17.8. These indicate a reasonable degree of linearity in each case. Notice though
that the spread in bmi appear to get larger as WST increases.

The third assumption is that the residuals have constant spread over the range of fitted
values of the model. Figure 17.9 is a plot of these residuals against the fitted values of bmi. This
third assumption appears not to be completely satisfied. The spread of residual values appear
to increase as the fitted bmi value increases. This may be an indication that an important
independent variable is missing from the model. However, the distribution of points above
and below the zero line seems reasonably symmetric, supporting the linearity assumption
demonstrated in the scatterplots.

The fourth assumption of the Normality of the residuals is checked with the histogram of
the residuals, see Figure 17.10. These do appear to be reasonably Normal, although there is
some suggestion of positive skew.

Thus all of the basic assumptions appear to be reasonably well satisfied (apart from the multi-
colinearity assumption which we have not tested), and the ordinary least squares regression
estimates b; and b, of the population parameters 8, and f,, are the ‘best’ we can get, i.e. they
fit the data at least as well as any other estimates.'?

Multiple linear regression is popular in clinical research. Much more popular though, for
reasons which will become clear in the next chapter, is logistic regression.

Analysis of variance

Analysis of variance (ANOVA) is a procedure that aims to deal with the same problems as linear
regression analysis, and many medical statistics books contain at least one chapter describing
ANOVA. It has a history in the social sciences, particularly psychology. However, regression
and ANOVA are simply two sides of the same coin — the generalised linear model. As Andy Field
(2000) says:

Anova is fine for simple designs, but becomes impossibly cumbersome in more com-
plex situations. The regression model extends very logically to these more complex
designs, without getting bogged down in mathematics. Finally, the method (Anova)
becomes extremely unmanageable in some circumstances, such as unequal sample
sizes. The regression method makes these situations considerably more simple.

In view of the fact that anything ANOVA can do, regression can also do, and, for me anyway,
do it in a way that’s conceptually easier, I am not going to discuss ANOVA in this book. If you
are interested in exploring ANOVA in more detail, you could do worse than read Andy Field’s
book, or that of Altman (1991).

2There are other methods of estimating the values of the regression parameters, which I don’t have the space
to consider. However, provided the basic assumptions are satisfied, none will be better than the ordinary least
squares estimators.



210 CH 17 STRAIGHT LINE MODELS: LINEAR REGRESSION

Scatterplot of BMI vs hip(cm)
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Figure 17.8 Scatterplots of the dependent variable body mass index (bmi) against hip circumference
(HIP) - top plot - and waist circumference (WST) - bottom plot. As you can see, both plots indicate a
more-or-less linear relationship
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Residuals Versus the Fitted Values
(response is BMI)
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Figure 17.9 A plot of the residuals versus the fitted bmi values, as a check of the basic assumptions
of the linear regression model

Histogram of the Residuals
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Figure 17.10 A plot of the residuals in the body mass index example, showing reasonable Normality,
and thus satisfying the fourth assumption governing the use of the ordinary least squares estimation
method
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Curvy models: logistic regression

Learning objectives

When you have finished this chapter you should be able to:

e Explain why a linear regression model is not appropriate if the dependent variable is
binary.

Explain what the logit transformation is and what it achieves.

Write down the logic regression equation.

Explain the concept of linearity and outline how this can be tested for and dealt with.

Explain how estimates of the odds ratios can be derived directly from the regression
parameters.

Describe how the statistical significance of the population odds ratio is determined.

Interpret output from SPSS and Minitab logistic regression programs.

A second health warning!

Although the maths underlying the logistic regression model is perhaps more complicated than
that in linear regression, once more a brief description of the underlying idea is necessary if
you are to gain some understanding of the procedure and be able to interpret logistic computer
outputs sensibly.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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Binary dependent variables

In linear regression the dependent or outcome variable must be metric continuous. In clinical
research, however, the outcome variable in a relationship will very often be dichotomous or
binary, i.e. will take only two different values: alive or dead; malignant or benign; male or
female and so on. In addition, variables that are not naturally binary can often be made so.
For example, birthweight might be coded ‘less than 2500 g’, and 2500 g or more’, Apgar scores
coded ‘less than 7, 7 or more), etc. In this chapter I want to show how a binary dependent
variable makes the linear regression model inappropriate.

Finding an appropriate model when the outcome variable is binary

If you are trying to find an appropriate model to describe the relationship between two variables
Yand X, when Y, the dependent variable, is continuous, you can draw a scatterplot of Yagainst
X (Figure 17.2 is a good example) and if this has a linear shape you can model the relationship
with the linear regression model. However, when the outcome variable is binary, this graphical
approach is not particularly helpful.

For example, suppose you are interested in using the breast cancer/stress data from the study
referred to in Table 1.6, to investigate the relationship between the outcome variable ‘diagnosis),
and the independent variable ‘age’. Diagnosis is, of course, a binary variable with two values:
Y =1 (malignant) or Y = 0 (benign). If we plot diagnosis against age, we get the scatterplot
shown in Figure 18.1, from which it’s pretty well impossible to draw any definite conclusions
about the nature of the relationship.

Scatterplot of Diagnosis (0=benign) vs Age
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Figure 18.1 Scatter plot of diagnosis against age for the 332 women in the breast cancer and stress
study referred to in Table 1.6
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Table 18.1 Proportion of women with malignant lump in each age group

Proportion with malignant lump, i.e. Y=1.

Or the probability that Y=1,i.e. P(Y=1) Midpoint of age group
0.140 45
0.226 55
0.635 65
0.727 75

The problem is that the large variability in age, in both the malignant and benign groups,
obscures the difference in age (if any) between them. However, if you group the age data: 40-49,
50-59, etc., and then calculate the proportion of women with a malignant diagnosis (i.e. with
Y =1) in each group, this will reduce the variability, but preserve the underlying relationship
between the two variables. The results of doing this are shown in Table 18.1.

Notice that I've labelled the first column as the ‘Proportion with Y= 1, or the Probability that
Y =1, written as P(Y = 1)’. Here’s why. In linear regression, you will recall that the dependent
variable is the mean of Y for a given X. But what about a binary dependent variable? Can we
find something analogous to the mean? As it happens, the mean of a set of binary, zero or one,
values is the same as the proportion of ones,! so an appropriate equivalent version of the binary
dependent variable would seem to be ‘Proportion of (Y= 1)s.

But proportions can be interpreted as probabilities (see Chapter 8). So the dependent variable
becomes the ‘Probability that Y = 1), or P(Y = 1), for a given value of X. For example the
probability of a malignant diagnosis (Y = 1) for all of those women aged 40, which we can
write as, P(Y = 1) given X = 40.

You can see in Table 18.1, the proportion with malignant breast lumps (the probability that
Y = 1) increases with age, but does it increase linearly? A scatterplot of the proportion with
malignant lumps, Y = 1, against group age midpoints is shown in Figure 18.2, which does
suggest some sort of relationship between the two variables. But it’s definitely nof linear, so a
linear regression model won’t work. In fact, the curve has more of an elongated S shape, so
what we need is a mathematical equation that will give such an S-shaped curve.

There are several possibilities, but the logistic model is the model of choice. Not only because
it produces an S-shaped curve, which we want, but, critically, it has a meaningful clinical
interpretation. Moreover, the value of P(Y = 1) is restricted by the maths of the logistic model
to lie between zero and one, which is what we want, since it’s a probability.

The logistic regression model

The simple? population logistic regression equation is:

P(Y = 1) = (/7F1%)/(1 + &/4F1) o))

! For example, the mean of the five values: 0, 1, 1, 0, 0 is 2/5 = 0.4, which is the same as the proportion of 1s,
ie. 2in 5 or 0.4.
2‘Simple’ because there is only one independent variable — so far.
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Scatterplot of P(Y=1) vs Age_midpt
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Figure 18.2 Scatterplot of the proportion of women with a malignant diagnosis (Y = 1) against
midpoints of age group

which we estimate with the sample logistic regression equation:
P(Y — 1) — (eb0+b1X)/(l + eb0+b1X) (2)

by determining the values of the estimators by and b;. We’ll come back to this problem in
a moment. Note that e is the exponential operator, equal to 2.7183, and has nothing to do
with the residual term in linear regression. As you can see, the logistic regression model is
mathematically a bit more complicated than the linear regression model.

The outcome variable, P(Y = 1), is the probability that Y = 1 (the lump is malignant),
for some given value of the independent variable X. There is no restriction on the type of
independent variable, which can be nominal, ordinal or metric.

As an example, let’s return to our breast cancer study (Figure 1.6). Our outcome variable
is diagnosis, where Y = 1 (malignant) or Y = 0 (benign). We'll start with one independent
variable — ever used an oral contraceptive pill (OCP), Yes = 1, or No = 0. We are going to treat
OCP use as a possible risk factor for receiving a malignant diagnosis. This gives us the sample
regression model:

P(Y — 1) — (eb0+bl><OCP)/(1 + ebO+b1><OCP) (3)

So all we've got to do to determine the probability that a woman picked at random from
the sample will get a malignant diagnosis (Y =1), with or without OCP use, is to calculate
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the values of by and b; somehow, and then put them in the logistic regression equation, with
OCP =0,0r OCP = 1.

Estimating the parameter values

Whereas the linear regression models use the method of ordinary least squares to estimate
the regression parameters 8y and B, logistic regression models use what is called maximum
likelihood estimation. Essentially this means choosing the population which is most likely to
have generated the sample results observed. Figure 18.3 and Figure 18.4, respectively, show the
output from SPSS’s and Minitab’s logistic regression program for the above OCP model.

SPSS’s and Minitab’s logistic regression program both give by = —0.2877 and b; = —0.9507.
If we substitute these values into the logistic regression model of Equation (3), we get:*

if OCP = 0 (has never used OCP), P(Y = 1) = 0.4286
if OCP =1 (has used OCP), then P(Y = 1) = 0.2247
So a woman who has never used an oral contraceptive pill has a probability of getting a
malignant diagnosis nearly twice that of a woman who has used an oral contraceptive. Rather

than being a risk factor for a malignant diagnosis, in this sample the use of oral contraceptives
seems to confer some protection against a breast lump being malignant.

The value of
the coefficient

by.

Logistic Regression

The p-value
for by. (OCP)

Number of cases included in the analysis: 332

Dependent Variable.. DIAGN Diagnosis

----------------- Variables in the Equatioft ------------------

‘Exp (B)’is the
odds ratio (see
text below).

Variable B Wald  df Sig

OoCP -.9507 .2424 15.3809 1 .0001
Constant —.2877 .1628 3.1213 1 .0773

The 95 %
confidence
interval for

the odds ratio.

Variable Exp(B)

OoCP .3865 .2403 .621

Figure 18.3 Abbreviated output from SPSS for a logistic regression with diagnosis as the dependent
variable, and use of oral contraceptive pill (OCP) as the independent variable or risk factor

3You'll first need to work out the values of (by + by x OCP), then (1 + by + b; x OCP), then raise e to each
of these powers. Then divide the former by the latter.
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Binary Logistic Regression: Diagnosis versus OCP?

The p-value
for b,
(OCP).

Response Information

The value

Variable  Value Count of the
Diagnosis 1 106 (Event) coefficient The odds ratio
0 226 by - (see text
Total 332

below).

Logistic Regression Table

95% CI
Lower Upper

Predictor Coef E Coef z P
Constant -0.2877 0.1628 -1.77 0.077
OCP? 1 -0.9507 0.2424 -3.92 0.000 0.39 0.24 0.62

Log-Likelihood = -200.009
Test that all slopes are zero: G = 15.860, DF = 1, P-Value = 0.000

The 95 %
confidence interval
for the odds ratio.

* NOTE * No goodness of fit tests performed.
*The model uses all degrees of freedom.

Figure 18.4 Output from Minitab for a logistic regression with Diagnosis as the dependent variable
and Use of Oral Contraceptive Pill (OCP) as the independent variable or risk factor

The odds ratio

The great attraction of the logistic regression model is that it readily produces odds ratios.
But how? There’s quite a lot of maths involved, but eventually we can get to the following
result:

Odds ratio = eP0+P1 /b0 — (b1 4

It is this ability to produce odds ratios that has made the logistic regression model so popular
in clinical studies. Thus to find the odds ratio all you need to do is raise e to the power by, easily
done on a decent calculator.

For example, in our Diagnosis/OCP model, by = —0.2877 and b, = —0.9507, so the
odds ratio for a malignant diagnosis for woman using OCP compared to women not using
OCP is:

Odds ratio = e %% = 0.386
In other words, a woman who has used OCP has only about a third of the odds of getting
a malignant diagnosis as a woman who has not used OCP. This result seems to confirm our

earlier result that use of OCP provides some protection against a malignancy. Of course we
don’t know whether this result is due to chance or whether this represents a real statistically

*Making use of the rule: X*/X* = x*~?,
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significant result in the population. To answer this question we will need either a confidence
interval for 8 or a p-value. I'll deal with this question shortly.

Exercise 18.1 Explain why, in terms of the risk of using OCP and the probability of
getting a malignant diagnosis, that the values P(Y = 1) = 0.4286 when OCP = 0, and
P(Y = 1) = 0.2247, when OCP = 1, are compatible with an odds ratio = 0.386 for a
malignant diagnosis, among women using OCP compared to women not using OCP.

Interpreting the regression coefficient

In linear regression, the coefficient b, represents the increase in Y for a unit increase in X. We
are not so much interested in the meaning of b, in the logistic regression model, except to note
that if the independent variable is ordinal or metric, then you might be more interested in the
effect on the odds ratio of changes of greater than one unit. For example, if the independent
variable is age, then the effect on the odds ratio of an increase in age of one year may not be as
useful as say a change of 10 years. In these circumstances, if the change in age is ¢ years, then
the change in the odds ratio is e,

Exercise 18.2 (a) In linear regression we can plot Y against X to determine whether the
relationship between the two variables is linear. Explain why this approach is not particu-
larly helpful when Y'is a binary variable. What approach might be more useful? (b) Is age
significant? (c) Figure 18.5 shows the output from Minitab for the regression of diagnosis
on age for the breast cancer example. Use the Minitab values to write down the estimated
logistic regression model. (d) Calculate the probability that the diagnosis will be malignant,
P(Y = 1), for women aged: (i) 45; (ii) 50. (e) Calculate [1 — P(Y = 1)] in each case, and
hence calculate the odds ratio for a malignant diagnosis in women aged 45 compared to
women aged 50. Explain your result. (f) Confirm that the antilog, of the coefficient on age
is equal to the odds ratio. (g) What effect does an increase in age of 10 years have on the odds
ratio?

Logistic Regression Table. Dependent variable is Diagnosis.

95% CI
Predictor ~ Coef SE Coef Z P Odds Ratio  Lower  Upper
Constant —6.4672 0.7632 —8.47  0.000
Age 0.10231  0.01326 7.72  0.000 1.11 1.08 1.14

Figure 18.5 Output from Minitab for the logistic regression of diagnosis on age
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Statistical inference in the logistic regression model

As you saw in Chapter 11, if the population odds ratio is equal to 1, then the risk factor in
question has no effect on the odds for any particular outcome; that is, the variable concerned
is not a statistically significant risk (or benefit). We can use either the p-value or the confidence
interval to decide whether any departures from a value of 1 for the odds ratio is due merely to
chance or is an indication of statistical significance.

In fact, in Figure 18.4, the 95 per cent confidence interval for the odds ratio for OCP use
is (0.24 to 0.62), and since this does not include 1, the odds ratio is statistically significant in
terms of receiving a malignant diagnosis. In addition the p-value = 0.000, so a lot less than 0.05.
However, we still need to be cautious about this result because it represents only a crude odds
ratio, which, in reality, would need to be adjusted for other possible confounding variables,
such as age. We can make this adjustment in logistic regression just as easily as in the linear
regression model, simply by including the variables we want to adjust for on the right-hand
side of the model.

Notice that Minitab, Figure 18.4, uses the z distribution to provide a p-value, whereas SPSS,
Figure 18.3, uses the Wald statistic, which can be shown to have a z distribution in the appropriate
circumstances.

Exercise 18.3 Figure 18.6 shows the output from SPSS for the regression of diagnosis on
body mass index (BMI). Comment on the statistical significance of body mass index as a
risk factor for receiving a malignant diagnosis.
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95.0% CI for EXP(B)
B Wald Sig. Exp(B) Lower Upper
Step 1(a) BMI .082 10.943 .001 1.085 1.034 1.139

Constant —2.859 19.313 .000 .057

Figure 18.6 The output from SPSS for the regression of diagnosis on body mass index (some columns
are missing)

The multiple logistic regression model

In my explanation of the odds ratio above I used a simple logistic regression model, i.e. one
with a single independent variable (OCP), because this offers the simplest treatment. However,
the result we got, that the odds ratio is equal to €, applies to each coefficient if there is more
than one independent variable, i.e. €%, >, etc. The usual situation is to have a risk factor
variable plus a number of confounder variables (the usual suspects — age, sex, etc.). Suppose,
for example, that you decided to include age and body mass index (BMI) along with OCP as
independent variables. Equation (1) would then become:

P(Y — 1) — (eﬁ0+ﬁ1xOCP+ﬂz><age+ﬂ3><BMl)/(1 4 eﬂ0+ﬂ1><OCP+ﬁz xage+fs3 ><BMI)

P(Y =1) is still of course the probability that the woman will receive a malignant diagnosis,
Y = 1. The odds ratio for ageis e??; the odds ratio for BMI is e”*. Moreover, as with linear regres-
sion, each of these odds ratios is adjusted for any possible interaction between the independent
variables.

As an example, output from Minitab for the above multiple regression model of diagnosis
against use of oral contraceptives (OCP), ageand body mass index (BMI), is shown in Figure 18.7.

Exercise 18.4 Comment on what is revealed in the output in Figure 18.7 about the
relationship between diagnosis and the three independent variables shown.

Building the model

The strategy for model building in the logistic regression model is similar to that for linear
regression:

® Make a list of candidate independent variables.

® For any nominal or ordinal variables in the list construct a contingency table and perform a
chi-squared test.> Make a note of the p-value.

5 Provided the number of categories isn’t too big for the size of your sample — you don’t want any empty cells
or low expected values (see Chapter 14)



222 CH 18 CURVY MODELS: LOGISTIC REGRESSION

Binary Logistic Regression: Diagnosis versus OCP, Age, BMI

Variable Value Count
Diagnosis(0=benign) 1 106 (Event)
0 224
Total 330

Logistic Regression Table

odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -9.24814 1.30391 -7.09 0.000
OCP 0.356767 0.329147 1.08 0.278 1.43 0.75 2.72
Age 0.111670 0.0164348 6.79 0.000 1.12 1.08 1.15
BMI 0.0812739 0.0275908 2.95 0.003 1.08 1.03 1.14

Goodness-of-Fit Tests

Method Chi-Square DF P

Pearson 329.603 321 0.358
Deviance 328.516 321 0.374
Hosmer-Lemeshow 2.581 8 0.958

Figure 18.7 Minitab output for the model diagnosis against OCP, age and BMI

® For any metric variables, perform either a two-sample t test, or a univariate logistic regression;
note the p-value in either case.

® Pick out all those variables in the list whose p-value is 0.25 or less. Select the variable with
the smallest p-value (if there is more than one with the smallest p-value pick one arbitrarily)
to be your first independent variable. This is your starting model.

® Finally, add variables to your model one at a time, each time examining the p-values for
statistical significance. If a variable, when added to the model, is not statistically signifi-
cant, drop it, unless there are noticeable changes in coefficient values, which is indicative of
confounding.

Goodness-of-fit

In the linear regression model you used R? to measure goodness-of-fit. In the logistic regression
model measuring goodness-of-fit is much more complicated, and can involve graphical as well
as numeric measures. Two numeric measures that can be used are the deviance coefficient and
the Hosmer-Lemeshow statistic. Very briefly, both of these have a chi-squared distribution, and
we can use the resulting p-value to reject, or not, the null hypothesis that the model provides
a good fit. The graphical methods are quite complex and you should consult more specialist
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sources for further information on this and other aspects of this complex procedure. Hosmer
and Lemeshow (1989) is an excellent source.

Exercise18.5 Use the Hosmer-Lemeshow goodness-of-fit statistic in the output of Figure
18.7 to comment on the goodness-of-fit of the model shown.

Linear and logistic regression modelling are two methods from a more general class of meth-
ods known collectively as multivariable statistics. Multivariate statistics on the other hand, is
a set of procedures applicable where there is more than one dependent variable, and includes
methods such as principal components analysis, multidimensional scaling, cluster and discrim-
inant analysis, and more. Of these, principal components analysis appears most often in the
clinical literature, but even so is not very common. Unfortunately, there is no space to discuss
any of these methods.
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Measuring survival

Learning objectives

When you have finished this chapter you should be able to:

e Explain what censoring means.

Calculate Kaplan-Meier survival probabilities.
® Draw a Kaplan-Meier survival curve.
e Use the Kaplan-Meier curve to estimate median survival time (if possible).

® Explain the use of the log-rank test to determine if the survival experience of two or
more groups is significantly different.

® Explain the role of the hazard ratio in comparing the relative survival experience of
two groups.

e (Qutline the general idea behind Cox proportional hazards regression and interpret the
results from such a regression.

Introduction

Imagine that you have a patient who has overdosed on paracetamol. A spouse asks you what
their chances of ‘coming through it’ are. Or suppose a patient with breast cancer wants to

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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know which of two possible treatments offers the best chance of survival. You can answer
questions like these with the help of a procedure known as survival analysis. The basis of this
method is the measurement of the time from some intervention or procedure to some event of
interest.

For example, if you were studying survival after mastectomy for breast cancer (the procedure),
you would want to know how long each woman survived following surgery. Here, the event
of interest would be death. For practical reasons you usually have to limit the duration of the
study, for example, to one year, or five years, etc. Very often you will want to compare the
survival experiences of two groups of patients; for example women having a mastectomy, with
women having less radical surgery.

Censored data

One particular problem, which makes this type of analysis tricky, is that you often don’t observe
the event of interest in all of the subjects. For example, after five years, by no means all of the
women will have died following the mastectomy. We don’t know how long these particular
patients will live after the end of the study period, only that they are still alive when the study
period ends. In addition, some patients may withdraw from the study during the study period;
they may move away, or simply refuse further participation, or die from a cause unrelated to
the study. These types of incomplete data are said to be censored.

A final problem is that not all patients may enter the study at the same time. Fortunately,
methods have been developed to deal with these difficulties. One of which, known as the
Kaplan—Meier method, gives us a table of survival probabilities which can be charted as the
Kaplan-Meier chart. The two questions that are often of the greatest interest are:

e What's the probability of a patient surviving for some given period of time?

® What’s the comparative survival experience of two groups of patients?

A simple example of survival in a single group

Look at the data in Table 19.1, which shows survival data (in months) for a group of 12 patients
diagnosed with a brain tumour, who were followed up for 12 months.

Table 19.1 shows that seven patients died, two left the study prematurely and three survived.
This means that you have seven definite and five censored survival times. We can represent the
survival times in the last column of Table 19.1 graphically, as in Figure 19.1, where the survival
times are arranged in ascending order.

Calculating survival probabilities and the proportion
surviving: the Kaplan-Meier table

The Kaplan-Meier method requires a Kaplan-Meier table like Table 19.2, with, strictly speaking,
rows only for time periods when a death occurs (shown in bold in the table). However, I have
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Table 19.1 Survival times (months) over a 12-month study period, of 12 patients diagnosed
with brain tumour. *Indicates censored data (patient survived, S, or left study prematurely, P).
The actual survival time for these patients is not known

Month of entry to study Time after study start Outcomes: Died (D),

(0 indicates present at date to death or Survived (S) or left Survival
Patient beginning of study) censoring (months) study prematurely (P) times
1 0 12 S* 12
2 0 12 S* 12
3 0 11 D 11
4 0 8 D 8
5 1 6 p* 5
6 2 12 S* 10
7 2 4 D 2
8 2 5 D 3
9 2 9 D 7
10 3 9 P* 6
11 3 8 D 5
12 3 7 D 4

included all 12 rows in the table to help illustrate the method more clearly. The second column
tells us how many people were still alive, n, at the beginning of each month, t. This will equal
the total initial number of patients in the study, minus both the total number of deaths and the
total number of premature withdrawals up to the beginning of the month. Column 4 records
the number of deaths d in each month. Column 5 records the total number at risk during the
month, r. By dividing column 4 by column 5, we get d/r, the probability that a patient still
alive at the beginning of the month will die during it (which is equivalent to the proportion of
patients dying in that month). The value of d/r is shown in column 6.

-
o O © O~ W N =

Patient

—_
N -

Survival time (months)

Figure 19.1 Chart of survival times (in ascending order) from Table 19.1
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Table 19.2 Calculation of Kaplan-Meier survival probabilities

1 2 3 4 5 6 7 8
Month Number still Withdrawn Deathsin Number Probability = Probability ~Cumulative
instudyat prematurely montht atriskin ofdeathin of surviving probability

start of during month ¢ month ¢ month t  of surviving
month ¢ month ¢ to month ¢
t n w d r drr p=1-—d/r S
1 12 0 0 12 0 1 1
2 12 0 0 12 0 1 1
3 12 0 0 12 0 0 1
4 12 0 1 11 1/11 = 0.091 0.909 0.909
5 11 0 1 10 1/10 = 0.100 0.900 0.818
6 10 1 0 9 0 1 1
7 9 0 1 8 1/8 =0.125 0.875 0.716
8 8 0 2 6 2/6 =0.333 0.667 0.478
9 6 1 1 4 1/4 = 0.250 0.750 0.358
10 4 0 0 4 0 1 1
11 4 0 1 3 1/3 =0.333 0.667 0.239
12 3 0 0 3 0 1 1

Since d/ris the probability of dying duringa time period, then (1 —d/r) must be the probability
of surviving to the end of the time period. This survival probability is shown in column 7. To
calculate the probability of surviving all of the preceding time periods and the current time
period, you must successively multiply the probabilities in column 7 together (ignoring any
0’s). The resultant cumulative probabilities, labelled S, are shown in column 8. For example,
the value for Sof 0.818 inrow 5is 1 x 1 x 1 x 0.909 x 0.900. These column 8 values are the
Kaplan-Meier survival probabilities.

Table 19.2 indicates that the probability of a patient surviving to the end of the third month
is 1, to the end of the fourth month is 0.909, and so on, and for the full 12 months after the
diagnosis is 0.239.

We can also interpret these values as proportions. For example, 0.909 of the patients (or 90.9
per cent, will survive to the end of the fourth month. About a quarter (23.9 per cent) will survive
the full 12 months. We can generalise these results to the population of patients of whom this
sample is representative, and who have the same type of brain tumour, at the same stage of
development, and receive the same level of care. In addition, we may want to adjust for possible
confounding variables such as age, sex, etc. We’ll deal with this question later.

The Kaplan-Meier chart

If you plot the cumulative survival probabilities in the last column of Table 19.2 against time,
you get the Kaplan-Meier curve, shown in Figure 19.2. Notice that the survival ‘curve’ looks like
a staircase, albeit with uneven steps. Every time there is a death, the curve steps down. Since
there are seven deaths, there are seven steps down.'

! Notice there is a double step down at period 8 because of the two deaths.
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Each time there
is a death, the
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down.
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does not occur

06 . until month 4.
There are
____________ ». \ two deaths in
0.4 month 8, so a

T~
double step
0.2 4 \

down.
1 2 3 4 5 6 7 8 9 10 11 12

Survival probability

The probability
of surviving 12
months is 0.239.

Time (months)

Figure 19.2 The Kaplan-Meier survival curve drawn from the data in Table 19.2 (the dotted line
indicates median proportion surviving - see text below)

Exercise 19.1 The data in Table 19.3 shows the survival times (in days) of eight patients
with acute myocardial infarction, treated with a new reperfusion drug Explase, as part of a
fibrinolytic regimen. Patients were followed up for 14 days. Calculate survival probabilities
and plot Kaplan-Meier survival curves. Comment on your results.

Table 19.3 The survival times (in days) of eight patients with acute
myocardial infarction. Patients were followed up for 14 days

Day of entry to study ~ Time after study start Outcomes: Died (D),

(0 indicates present at date to death or Survived (S) or Left study
Patient  beginning of study) censoring (days) prematurely (P)
1 0 3 D
2 0 14 S
3 0 8 D
4 0 12 p
5 1 14 S
6 2 13 D
7 2 14 S
8 2 14 S

Determining median survival time

One of the consequences of not knowing the actual survival times of all of those subjects
who survive beyond the end of the study period is that we cannot calculate the mean survival
time of the whole group. However, if you interpret the probabilities on the vertical axis of
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a Kaplan-Meier chart as proportions or percentages, you can often easily determine median
survival times. It is that value which corresponds to a probability of 0.5 (i.e. 50 per cent). In
Figure 19.2, the median survival time is 8 months. At this time, half of the patients still survived.
Obviously the survival time of any proportion of the sample can be determined in this same
way, including the interquartile range values, provided that the Kaplan-Meier curve goes down
far enough (unfortunately it often doesn’t).

1.0 4
0.9
0.8 -
0.7
0.6
0.5
0.4 -
0.3
0.2
0.1 1

0~

de Gramont
Lokich

Raltitrexed

Proportion without progression

- T

T 1
0 6 12 18 24
Time since randomisation (months)

Patients at risk

de Gramont 303 133 42 11 4
Lokich 301 124 40 14 5
Raltitrexed 301 108 30 8 4

Figure 19.3 Kaplan-Meier curves for overall survival for three groups of patients in a comparison of
three chemotherapy regimes in the treatment of colorectal cancer. Reprinted from The Lancet, 2002,
359, 1559 with permission from Elsevier

Exercise 19.2 Figure 19.3 shows Kaplan-Meier curves for progression-free survival, for
three groups of patients in a comparison of three chemotherapy regimes used for the
treatment of colorectal cancer (Maughan et al. 2002). The three regimes were: the de
Gramont regimen; the Lokich regimen; and Raltitrexed. What were the approximate
median survival times for progression-free survival with each of the three regimes?

Comparing survival with two groups

Although the survival curve for a single group may sometimes be of interest, much more
usual is the desire to compare the survival experience of two or more groups. For example,
Figure 19.4 is taken from a study of chemotherapy for the treatment of bladder cancer (Medical
Research Council Advanced Bladder Working Group 1999). One group of patients (1 = 485)
was randomly assigned to receive conventional radical surgery (cystectomy) or radiotherapy,
while a second group (1 = 491) received the conventional treatment plus chemotherapy. The
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No chemotherapy 485 271 192 145 102 63

Chemotherapy 491 308 222 163 116 75

Figure 19.4 Survival curves for two groups of patients with bladder cancer, one group given conven-
tional surgery or radiotherapy, the other group given the conventional treatment plus chemotherapy.
Reprinted coutresy of Elsevier (The Lancet, 1999, Vol No. 354, p. 533-9)

question asked, ‘Was the survival experience of the chemotherapy group any better over the
five year follow up?’

The two Kaplan-Meier curves seem to show that the proportions surviving in the chemother-
apy group was larger than those in the conventional group throughout the duration of the study,
since the survival curve for the former was higher than that of the latter. In fact, the authors
of this study report median values for disease-free survival of 20 months for the chemotherapy
group and 16.5 months for the no-chemotherapy group. The 95 per cent confidence interval for
the difference in medians was (0.5 to 7.0) months, so the difference in medians was statistically
significant.

Notice that the authors have provided a table showing the numbers at risk at each time
interval. This is to remind us that the smaller numbers of survivors towards the end of a trial
produce less reliable results. As a direct consequence of this effect, you should not assume that
just because the gap between two survival curves gets progressively larger (as it is often seen to
do), that this is necessarily due to an actual divergence in the survival experiences in the two
groups. It might well be caused simply by the low numbers of subjects still at risk. This can
make the ends of the curves unreliable.

The log-rank test

If you want to compare the overall survival experience of two (or more) groups of patients
(rather than say comparing just the median survival times as we did above), then one possible
approach is to use the non-parametric log-rank test. Essentially, the null hypothesis to be tested
is that the two samples (the two groups) are from the same population as far as their survival
experience is concerned. In other words there is no difference in the survival experiences.
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The log-rank test of this hypothesis uses a comparison of observed with expected events
(deaths, say), given that the null hypothesis is true.? If the p value is less than 0.05 you can reject
the null hypothesis and conclude that there is a statistically significant difference between the
survival experience of the groups. You can then use the Kaplan-Meier curves to decide which
group had the significantly better survival. A limitation of the log-rank test is that it cannot
be used to explore the influence on survival of more than one variable, i.e. the possibility of
confounders — for this you need Cox’s proportional regression, which we’ll come to shortly.

The authors in the bladder cancer study reported a log-rank test p value of 0.019 for the
difference in survival times at three years, but unfortunately don’t give the results of the test
over the whole five year duration of the study.

Exercise 19.3 What do you conclude about the statistical significance of the difference
in three year survival times of the chemotherapy and non-chemotherapy groups from the
results given in the previous paragraph?
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3
(0]
40 1
E’ — Azithromycin
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9] === Combination
a
0 . T T T T T T )
0 100 200 300 400 500 600 700 800
Time (days)
Number of patients at risk
Azithomycin 233 185 141 117 78 50 29 11 2
Rifabutin 236 172 133 106 72 44 26 10 0

Combination 224 178 150 121 89 52 31 16 2

Figure 19.5 Kaplan-Meier curves from a study to assess the clinical efficacy of azithromycin for
prophylaxis of Pneumocystitis carinii pneumonia in HIV-1 infected patients. Reprinted courtesy of
Elsevier (The Lancet, 1999, Vol No. 354, p. 1891-5)

An example of the log-rank test in practice

Figure 19.5 shows the Kaplan-Meier curves from a study to assess the clinical efficacy of
azithromycin for prophylaxis of Pneumocystitis carinii pneumonia in HIV-1 infected patients
(Dunne et al. 1999). Patients were randomly assigned to one of three treatment groups: the first
group given azithromycin, the second rifabutin and the third a combination of both drugs. The
figure shows the event-free (no Pneumocystitis carinii pneumonia) survival experiences over
an 800 day period for the three treatment groups.

2You may have spotted the similarity with the chi-squared test considered earlier in the book. In fact the
calculations are exactly the same.
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The log-rank test was used to test the hypothesis that there is no difference in the percentage
event-free between the azithromycin and rifabutin groups (p value = 0.033), and between
the azithromycin and the combination groups (p-value = 0.026). The authors concluded
that azithromycin as prophylaxis for Prneumocystitis carinii pneumonia, provides additional
protection over and above standard Pneumocystitis carinii pneumonia prophylaxis. However,
these results should be treated with caution because of the very small size of the survivor group

towards the end of the study.
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Logrank test: p = 0.03
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Combination 325 279 233 188 159 105 54
Aspirin 336 282 233 186 159 100 56
Coumadin 332 293 243 197 161 102 60

Figure 19.6 Kaplan-Meier curves of percentage number of subsequent ischaemic events from a ran-
domised controlled trial into the relative effectiveness of aspirin and oral anticoagulants (coumadin),
used for antiplatelet treatment, following myocardial infarction. Reprinted courtesy of Elsevier (The

Lancet 2002, 360, 109-14, Fig. 3, p. 111)

Which treatment seems to offer the best survival?

Exercise 19.4 Figure 19.6 shows the Kaplan-Meier curves for the percentage number of
ischaemic events from a randomised controlled trial into the relative effectiveness of as-
pirin and oral anticoagulants (coumadin) for antiplatelet treatment following myocardial
infarction (van Es et al. 2002). The object was to investigate which of these two drugs is
more effective for the long-term reduction of subsequent ischaemic events, and whether
the combination of the two drugs offers greater benefit than either drug alone. Is there
a statistically significant difference in mortality between the three possible treatments?

The hazard ratio

The log-rank test is limited by the fact that it is just that — a test. It will tell you if there is a
significant difference between the survival experience of two (or more) groups, but does not
quantify that difference. For this we need what is called the hazard ratio (based on the ratio
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of observed and expected events for the two groups), along with which we can calculate a
confidence interval. As a matter of interest, the authors of the bladder cancer study reported,
for those alive and disease free, a hazard ratio of 0.82, with a 95 per cent confidence interval
of (0.70 to 0.97). We can interpret this result to mean that the group who had chemotherapy
had a risk of dying in the study period of only 82 per cent compared to the risk for the non-
chemotherapy group, and this difference was statistically significant (confidence interval does
not include 1).

Exercise19.5 The survival curves shown in Figure 19.4 from the bladder cancer study are
for subjects who are alive and disease free. For subjects who were alive but not necessarily
disease free, the authors report the following results. What do these results tell you?

Comparison of the survival time in the two groups gave a hazard ratio of 0.85
[95 per cent CI of (0.71 to 1.02)]. The absolute difference in 3-year survival was
5.5 per cent, 50.0 per cent in the chemotherapy group, 55.5 per cent in the non-
chemotherapy group [95 per cent CI of (—0.5 to 11.0)]. The median survival time
for the chemotherapy group was 44 months and for the no-chemotherapy group
was 37.5 months [95 per cent CI of (—0.5 to 15)].

The proportional hazards (or Cox’s) regression model

Although researchers can use the log-rank test to distinguish survival between two groups, the
test only provides a p value; it would be more useful to have an estimate of any difference in
survival, along with the corresponding confidence interval. The hazard ratio mentioned above
provides this, but neither the log-rank test nor the simple hazard ratio allow for adjustment for
possible confounding variables, which may significantly affect survival. For this we can use an
approach known as proportional hazards (or Cox’s) regression. This procedure will provide both
estimates and confidence intervals for variables that affect survival, and enable researchers to
adjust for confounders. We will discuss briefly the principle underlying the method, and the
meaning of some of the terms used.

The focus of proportional hazards regressionis the hazard. The hazard is akin to a failure rate. If
the end-point is death, for example, then the hazard is the rate at which individuals die at some
point during the course of a study. The hazard can go up or down over time, and the distribution
of hazards over the length of a study is known as the hazard function. You won’t see authors
quote the hazard regression function or equation, but for those interested it looks like this:

Hazard = hy + eBrXi+B2Xo+..)

hy is the baseline hazard and is of little importance. The explanatory or independent variables
can be any mixture of nominal, ordinal or metric, and nominal variables can be ‘dummied; as
described in Chapter 17 and Chapter 18. The same variable selection procedures as in linear
or logistic regression models can also be used, i.e. either automated or by hand.

The most interesting property of this model is that ef1, ef2, etc. give us the hazard ratios, or
HRs, for the variables Xj, X, and so on (notice the obvious similarity with the odds ratios in
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logistic regression). The hazard ratios are essentially risk ratios, but called hazard ratios in the
context of survival studies. For example, in a study of the survival of women with breast cancer,
the variable X; might be ‘micrometastases present (Y/N)’. In which case, the hazard ratio HR,
(the risk of death for a patient when micrometastases are present compared to that for a patient
where they are absent, is equal to e’!. All of this is only true if the relative effect (essentially the
ratio) of the hazard on the two groups (for example, the relative effect of micrometastases on
the survival of each group) remains constant over the whole course of the study.

An application from practice

As an example of proportional hazards regression, Table 19.4 is taken from a study into the
relative survival of two groups of patients with non-metastatic colon cancer; one group having
open colectomy (OC), the other laparoscopy-assisted colectomy (LAC) (Lacy et al. 2002). The
figure shows hazard ratios and their confidence intervals: for the probability of being free of
recurrence; for overall survival; and for cancer-related survival, after the patients were stratified
according to tumour stage.

So, for example, patients with lymph-node metastasis do only about a third as well in terms
of being recurrence-free over the course of the study compared to patients without lymph-
node metastasis (hazard ratio = 0.31), and this difference is statistically significant since the
confidence interval does not include 1 (and the p value of 0.0006 is < 0.05). Patients with
lymph-node metastasis also compare badly with non-metastasis patients in terms of both

Table 19.4 Results of a Cox proportional hazards regression analysis comparing the survival of
patients with laparoscopy-assisted colectomy versus open colectomy, for the treatment of
non-metastatic colon cancer. Reproduced courtesy of Elsevier (The Lancet, 2002, Vol No. 359,
page 2224-30

Hazard ratio (95% CI) p

Probability of being free of

recurrence
Lymph-node metastasis 0.31 (0.16-0.60) 0.0006 Type of
surgical
(presence vs absence) procedure
Surgical procedure (OC vs LAC)  0.39 (0.19-0.82) 0.012 Iaparoscop);-
Preoperative serum CEA 0.43 (0.22-0.87) 0.018 assisted vs open
concentrations colectomy, is
(>4 ng/mL vs <4 ng/mL) significantly beneficial
. in terms of
Oveltall survival recurrence-free
Surgical procedure (OC vsLAC)  0.48 (0.23-1.01) 0.052 and cancer-related
Lymph-node metastasis 0.49 (0.25-0.98) 0.044 survival, but not in

terms of overall
survival.

(presence vs absence)

Cancer-related survival

Lymph-node metastasis 0.29 (0.12-0.67) 0.004
(presence vs absence)
Surgical procedure (OC vsLAC)  0.38 (0.16-0.91) 0.029

OC = open colectomy; LAC = laparoscopy-assisted colectomy;
CEA = carcinoembryonic antigen.
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overall survival (only about half as well, HR = 0.49), and cancer-related survival (just over a
quarter as well, HR = 0.29). Both of these results are statistically significant. Note that type of
surgery; laparoscopy-assisted versus open colectomy, is not statistically significant in terms of
overall survival as the confidence interval of (0.23 to 1.01) includes 1.

Table 19.5 Hazard ratios due to a number of risk factors in a univariate (unadjusted), and
multivariate (adjusted) cohort analysis of the risk to HIV+ women of vulvovaginal and perianal
condylomata acuminata and intraepithelial neoplasia. Reproduced courtesy of Elsevier (The
Lancet, 2002, Vol No. 359, page 108-14

Univariate analysis™ Multivariate analysis®
Number Hazard ratio Adusted hazard
of women  (95% CI) p ratio (95% CI) p
Risk factor
HIV-1 infection 726 17.0 (4.07-70.9)  0.0007 6.96 (1.51-32.2) 0.01
CD4 T lymphocyte count* 707  3.38 (2.24-5.10) <0.0001 1.66 (1.03-2.69) 0.04
Human papillomavirus infection 699  4.86 (2.21-10.7)  0.0006 3.76 (1.67-8.43) 0.0013
History of injecting two or more 726 3.09 (1.57-6.07) 0.003 2.32(1.14-4.71) 0.02
drugs three or more times per week

Less than a highschool education 725  2.15(1.09-4.22) 0.03 1.99(1.00-3.98) 0.05
Cigarette smoking at enrolment 726  0.84(0.43-1.64) 0.61 0.71(0.35-1.44) 0.34
Age <35 years at enrolment 726 1.85(0.93-3.68) 0.08
Currently unmarried 726  2.48(0.96-6.38) 0.06
Annual income <US$ 10 000 711 1.15(0.56-2.34)  0.71
First sex at <16 years of age 723 1.33 (0.69-2.59)  0.40
>7 lifetime sex partners 722 1.40 (0.71-2.79)  0.33
History of prostitution 722 1.83(0.90-3.74) 0.10
History of ever injecting drugs 726 1.74(0.90-3.39)  0.10

History of sexually transmitted disease® 654  1.58 (0.72-3.45)  0.25

*In univariate analysis, vulvovaginal lesion was the outcome variable.

355 HIV-1-positive and 325 HIV-1-negative women were included in the multivariate analysis, with vulvovaginal
or perianal lesion as the outcome variable and HIV-1 infection, CD4 T lymphocyte count, human papillomavirus
infection, less than a highschool education, cigarette smoking, and history of injection of two or more drugs three or
more times per week as covariates.

f HIV-1 negative women were presumed to have a CD4 count >500 cell/, pL.

§ Does not include a history of genital warts.

Exercise 19.6 Table 19.5 shows the hazard ratios (unadjusted and adjusted) due to a
number of risk factors in a cohort analysis of the risk to HIV+ women of vulvovaginal
and perianal condylomata acuminata and intraepithelial neoplasia (Conley et al. 2002).
Interpret the multivariate results. How do these differ from the univariate results?

Checking the proportional hazards assumption

The proportional hazards assumption can be checked graphically using what is known as the
log-log plot. Unfortunately, this procedure is beyond the scope of this book.
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Systematic review and
meta-analysis

Learning objectives

When you have finished this chapter you should be able to:

® Provide a broad outline of the idea of systematic review.

e (Qutline a typical search procedure.

e Describe what is meant by publication bias and its implications.

® Describe how we can use the funnel plot to examine for the presence of publication
bias.

e Explain the importance of heterogeneity across studies and how the UAbbé plot can
be used in this context.

e Explain the meaning of meta-analysis.
e Qutline the role of the Mantel-Haenszel procedure in combining studies.

® Describe what a forest plot is and how it is used.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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Introduction

If you have a patient with a particular condition and you want to know the current consensus on
the most effective treatment, then you could perhaps ask the opinions of colleagues (although
they may know no more than you) or maybe look through some pharmaceutical publicity
material. Or read all the relevant journals lying around your clinic or office. Better still, if
you have access to one of the clinical databases, such as Medline, then the job will be that
much easier; in fact, anything like an adequate search is almost impossible otherwise. If you
want your search to capture everything written on your topic then you will need a systematic
approach. This process of searching for all relevant studies (or trials) is known as a systematic
review.
However you do your systematic review, you are likely to encounter some difficulties:

® Many of the studies you turn up will be based on smallish samples. As you know, small
samples may well produce unreliable results.

e Partly as a consequence of the above problem, many of the studies come to different and
conflicting conclusions.

® There will be some studies that you simply do not find. Perhaps because they are published
in obscure and/or non-English-language journals, or are not published at all (for example,
internal pharmaceutical company reports, or research dissertations). This shortfall may lead
to what is known as publication bias.

To some extent you can address the first two of these problems by combining all of these
individual studies into one large study, as you will see later (a process called meta-analysis),
and you will also want to deal with the potential for publication bias. But let’s start with a brief
description of systematic review.

Systematic review

The basis of a systematic review is a comprehensive search that aims to identify all similar
and relevant studies that satisfy a pre-defined set of inclusion and exclusion criteria. As an
example, the following extract from a systematic review and meta-analysis of studies of dietary

intervention to lower blood cholesterol, shows the inclusion and exclusion criteria, together
with a brief description of the search procedure (Tang et al. 1998).

Methods

Identification of trials and extraction of data

We aimed to identify all unconfounded randomised trials The object of
of dietary advice to lower cholesterol concentration in free- the search...

living subjects published before 1996. Trials were eligible for
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inclusion if there were at least two groups, of which one could
be considered a control group; treatment assignment was by
random allocation; the intervention was a global dietary mod-
ification (changes to various food components of the diet to
achieve the desired targets); and lipid concentration were mea-
sured before and after the intervention.

..the
inclusion
criteria...

..the
exclusion
criteria...

Trials of diets to reduce fat intake in women considered to
be at risk of breast cancer were included because the diets
were similar to those aimed at lowering cholesterol concen-
tration. We excluded trials of specific supplementation diets
(such as those with particular oils or margarine, garlic, plant
sterol, or fibre supplements, etc.), multifactorial intervention
trials, trials aimed primarily at lowering body weight or blood
pressure, and trials whose interventions lasted less than four
weeks. Trials based on randomisation of workplace or general
practice were also excluded.

To identify these trials we identified four electronic databases
(Medline, Human Nutrition, EMBASE, and Allied and Alter-
native Medicine). These databases included trials published
after 1966. We also identified trials by hand searching the
American Journal of Human Nutrition by scrutinising the
references of review articles and of each relevant randomised
trial, and by consulting experts on the subject.

~..and the
search
strategy.

Reports that appeared only in non-English language journals were examined with
the help of translators. Trials were categorised according to their approximate target
diet into four groups.

The end result of a systematic review then, is a list of studies, each one of which provides a
value for the specified outcome measure. In the above example, this outcome measure was
the percentage difference in mean total blood cholesterol between the intervention (dietary
advice) group and the control group. Examination of this list of outcome values may provide
the required insights into treatment effectiveness.

Exercise 20.1 Briefly outline the systematic review procedure and some of the problems
that may arise.

The forest plot

The list of studies produced by the systematic review is often accompanied by what is known as
a forest plot. This plot has study outcome on the vertical axis, usually arranged by size of study
(i.e. by sample size), and the outcome measure on the horizontal axis. The outcome measure
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might be odds or risk ratios, means or proportions, or their differences, and so on. There
are a number of ways of displaying the data. For example, by using a box with a horizontal
line through it, whose length represents the width of the 95 per cent confidence interval for
whatever outcome measure is being used. Or with a diamond, whose width represents the 95
per cent confidence interval. The area of each box or diamond should be proportional to its
sample size. As an example, the forest plot for the cholesterol study referred to above is shown
in Figure 20.1.

Here the 22 individual studies, each represented by a black square whose size is proportional
to sample size, are divided into four groups according to their approximate target diet (we don’t
need to go into the details). The aggregated mean percentage reduction in cholesterol (with
a 95 per cent confidence interval) for each of these groups is represented by a white square,
whose size is proportional to the sample size of the aggregated individual studies. The large
white square at the bottom of the plot is the aggregated value for all the studies combined. I'll
come back to this shortly.

The horizontal axis represents mean percentage change in blood cholesterol. As you can
see, 21 of the 22 studies show a reduction in percentage cholesterol (the study fourth from
the top lies exactly on the zero, or no difference, line). However, in seven of the studies the
confidence interval crosses the zero line, indicating that the reduction in cholesterol is not
statistically significant. The remaining 15 studies show a statistically significant reduction
(95 per cent confidence interval does not cross the zero line), as do all four group sum-
mary values. Thus there appears to be plenty of evidence that dietary interventions of the
type included here do manage to achieve statistically significant reductions in total blood
cholesterol.

Exercise 20.2 The results in Table 20.1 show the outcomes (relative risk for proportion
of subjects with side effects), from each of six randomised trials comparing antibiotic with
placebo for treating acute cough in adults (Fahey et al. 1998). Draw a forest plot of this
data and comment briefly on what it shows. Note: relative risks greater than 1 favour the
placebo (i.e. fewer side effects).

Table 20.1 The outcomes (relative risk for proportion of subjects with side effects), from each
of six randomised trials comparing antibiotic with placebo for treating acute cough in adults.
Reproduced from BMJ 1998, 316: 906-10. Figure 4, p. 909. Figures 2 and 3, p. 908, courtesy of
BMJ Publishing Group

Study Sample size Relative risk (95 % CI)
Briskfield et al. 50 0.51 (0.20 to 1.32)
Dunlay et al. 57 7.59 (0.43 to 134.81)
Franks and Gleiner 54 3.48 (0.39 to 31.38)
King et al. 71 2.30 (0.93 to 5.70)
Stott and West 207 1.49 (0.63 to 3.48)
Verheij et al. 158 1.71 (0.80 to 3.67)

Total 597 1.51 (0.86 to 2.64)
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Publication and other biases

The success of any systematic review depends critically on how thorough and wide-ranging the
search for relevant studies is. One frequently quoted difficulty is that of publication bias, which
can arise from a number of sources:

® The tendency for journals to favour the acceptance of studies showing positive outcomes at
the expense of those with negative outcomes.

® The tendency for authors to favour the submission to journals of studies showing positive
outcomes at the expense of those with negative outcomes.

e Studies with positive results are more likely to be published in English language journals
giving them a better chance of capture in the search process.

o Studies with positive results are more likely to be cited, giving them a better chance of capture
in the search process.

o Studies with positive results are more likely to be published in more than one journal, giving
them a better chance of capture in the search process.

e Some studies are never submitted for publication. For example, those that fail to show a pos-
itive result, those by pharmaceutical companies (particularly if the results are unfavourable),
graduate dissertations and so on.

In the light of all this it is important that possible presence of publication bias should be
addressed. One possibility is to use what is known as a funnel plot.

The funnel plot

In a funnel plot the size of the study is shown on the vertical axis and the size of the treatment’s
effect (for example, as measured by an odds or risk ratio, or a difference in means, etc.) is
shown on the horizontal axis. In the absence of bias the funnel plot should have the shape
of a symmetric upturned cone or funnel. Larger studies shown at the top of the funnel will
be more precise (their results will not be so spread out), smaller studies, shown towards the
bottom less precise, and therefore more spread out. These differences produce the funnel shape.
However, if the funnel is asymmetrical, for example, if parts of the funnel are missing or poorly
represented — and this will usually be near the bottom of the funnel where the smaller studies
are located — then this is suggestive of bias of one form or another.!

! There are a number of other possible causes of bias in systematic reviews. Those interested should look, for
example, at Egger and Davey Smith (1998), where other possible biases are discussed.
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Figure 20.2 Funnel plot used to check for publication bias in a systematic review of the effectiveness
of topically applied non-steroidal anti-inflammatory drugs. The asymmetry of the funnel is an indica-
tion of publication bias (see text). Reproduced from BMJ, Jan 1998; 316: 333-338, courtesy of BMJ
Publishing Group

As an example, Figure 20.2 is a funnel plot from a systematic review of the effectiveness of
topically applied non-steroidal anti-inflammatory drugs in acute and chronic pain conditions
(Moore et al. 1998). Relative benefit (risk ratio) is shown on the horizontal axis. Each point in
the figure represents one of the studies. Values to the left of the value of 1 on the horizontal axis
show negative ‘benefit] values to the right, positive benefit.

The asymmetry in the funnel is quite marked, with a noticeable absence of small studies
showing negative ‘benefit’ (risk ratio less than 1). The authors comment:

The funnel plot might be interpreted as showing publication bias. The tendency for
smaller trials to produce a larger analgesic effect might be construed as supporting the
absence of trials showing no difference between topical non-steroidal and placebo. We
made strenuous efforts to unearth unpublished data and contacted all pharmaceutical
companies in the United Kingdom that we identified as producing non-steroidal
products. One company made unpublished data available to us, but the others did
not feel able to do so.

Exercise 20.3 a) Outline the major sources of publication bias. (b) Figure 20.3 shows a
funnel plot from a systematic review of trials of beta blockers in secondary prevention after
myocardial infarction (Egger and Davey Smith 1998). The plot has odds ratio (horizontal
axis) against sample size. Comment on the evidence for publication bias.
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Figure 20.3 Funnel plot from a systematic review of trials of beta blockers in secondary prevention
after myocardial infarction. Reproduced from BMJ 1998, 316: 61-6. Figure 2, p. 64, courtesy of BMJ
Publishing Group

Combining the studies

Meta-analysis is the process of combining a number of separate studies to produce one ‘super-
study’. So, for example, we might have three separate studies, with sample sizes of 40, 80 and
150. When combined, we get a super-study with a sample size of 270. The assumption of the
meta-analysis is that this super-study will provide a more reliable and precise overall result for
the output variable in question, than do any of the smaller individual studies. We can use the
Mantel-Haenszel procedure to combine the studies.? Before studies can be combined, however,
they must satisfy the homogeneity criterion. A few words about that first, before we look at an
example of meta-analysis.

Homogeneity among studies

Even when a set of potentially similar studies has been identified, authors have to make sure they
are similar, or homogeneous, enough to be combined. For example, they should have similar
subjects, have the same type and level of intervention, the same output measure, the same
treatment effect and so on. Only if studies are homogeneous in this way can they be properly
combined. Studies which don’t have this quality are said to suffer from heterogeneity. The
underlying assumption (i.e. the null hypothesis) of meta-analysis is that all of the studies
measure the same effect in the same population, and that any differences between them is due
to chance alone. When the results are combined the chance element cancels out.

% Note that this is not to be confused with the Mantel-Haenszel test for heterogeneity.
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You might find the comments on heterogeneity by the authors of the diet and cholesterol
study quoted earlier illuminating (Tang, et al. 1998):

Heterogeneity between study effects

The design and results of these dietary studies differed greatly. They were conducted
over 30 years and varied in their aims, in the intensity and type of intervention, and
in the different baseline characteristics of the subjects included. Completeness and
duration of follow up also differed. Unsurprisingly, the heterogeneity between their
effects on blood cholesterol concentration was also significant. Among the longer
trials some, but not all, of the heterogeneity between the effects on blood cholesterol
concentration seemed to be due to the type of diet recommended. Deciding which
trials should be included in which groups is open to different interpretation and,
although we tried to be consistent, for some trials the target diets either were not
clearly stated or did not fit neatly into recognised categories such as the step 1 and
2 diets. It is important to be cautious in interpreting meta-analysis when there is
evidence of significant heterogeneity; although there was no evidence that the overall
results were influenced by trials with outlying values.

The homogeneity assumption should be tested. One possibility is for the authors to provide
readers with a L’Abbé plot. The L’Abbé plot displays outcomes from a number of studies, with
the percentage of successes (or reduction in risk, etc.) with the treatment group on the vertical
axis, and same measure for the control/placebo group on the horizontal axis. The 45° line is
thus the boundary between effective and non-effective treatment. Values above the line show
beneficial results. If possible, varying sized plotting points proportional to sample size should
be shown. The more compact the plot, the more homogeneous the studies.

As an example, Figure 20.4 is a U Abbé plot showing outcomes from 37 placebo-controlled
trials of topical non-steroidal anti-inflammatory drugs in acute (e), and chronic (m), pain

Beneficial
results above
the 45° line.

Non-
beneficial
results below
the 45° line.

Percentage with successful outcome with topical non-steroidal

0 25 50 75 100
Percentage with successful outcome with topical placebo

Figure 20.4 L'Abbé plot showing outcomes from 37 placebo-controlled trials of topical non-steroidal
anti-inflammatory drugs in acute (e) and chronic (M) pain conditions. The compactness of the plotted
points is a measure of homogeneity across the studies. Reproduced from BMJ, Jan 1998; 316: 333-338,
courtesy of BMJ Publishing Group
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conditions (Moore et al. 1998). In this plot, the authors have not plotted the points in proportion
to sample size. Whether the degree of spread of the points in Figure 20.4 is indicative of
homogeneity among the studies is a matter of judgement, which can only be made by those
experienced in the interpretation of these charts. Note that the overall meta-analytic result can
also be plotted on this same plot (but is not shown in Figure 20.4).

Mantel-Haenszel test for heterogeneity

A more commonly used alternative is the Mantel-Haenszel test for heterogeneity, which uses the
chi-squared distribution (see Chapter 14). The null hypothesis is that the studies are homoge-
neous. An example of its use is given in Table 20.2, which is taken from a study that ‘aimed to
identify and evaluate all published randomised trials of hospital versus general practice care for
people with diabetes’ (Griffin 1998). The author’s Table 2 presents a summary of the weighted
(by sample size) mean differences, for a number of different outcomes. The author’s Table 3
presents similar information for different outcomes in terms of the odds ratio. The p-values
for the Mantel-Haenszel test (using chi-squared) are given in the last column. Only one set of
studies (Referral to chiropody, p-value < 0.005) displays evidence of heterogeneity, but since
this comprised only two studies, the result is somewhat meaningless.

Meta-analysis and the Mantel-Haenszel procedure

If the studies pass the homogeneity test then we can combine them using the Mantel-Haenszel
procedure, to produce the meta-analysis; this will give us an overall value for the outcome in
question. The procedure is often accompanied by a forest plot, showing the individual studies,
together with the combined result, as in the next example.

This is a report of a meta-analysis of randomised controlled trials to compare antibiotic
with placebo, for acute cough in adults, referred to above (Fahey et al. 1998). The focus was
on placebo-controlled trials, which reported two specific outcomes: the proportion of subjects
reporting productive cough; and the proportion of subjects reporting no improvement at
follow-up.’ Figure 20.5 shows the forest plots for these two acute cough outcomes, in terms of
the risk ratios (called by the authors ‘relative risks’) in favour of the specific outcome.

The overall net outcome effect is shown with a diamond shape here (one for each of the two
outcomes). The area of the diamond is proportional to the total number of studies represented,
and the width the 95 per cent confidence interval. Values to the left of an odds ratio of 1
(bottom axis) show reductions in fatalities among cases, those to the right an increase in
fatality (compared to control groups).

The Mantel-Haenszel procedure was used to produce the final result shown at the bottom
of the forest plot in Figure 20.5. The aggregate relative risks are 0.85 for productive cough and
0.62 for no improvement at follow-up. These appear to show reductions in the risk for both
conditions and favour the antibiotic over the placebo. However, since both have 95 per cent
confidence intervals which include 1, neither is in fact significant, confirmed by the fact that

3 There was a third outcome concerned with side-effects which is not considered here. See Exercise 20.2 above.
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Proportion of subjects with productive cough at follow up
Relative risk (95% CI) Weight Relative risk (95% Cl)

Study Antibiotic Placebo random effects model (%) random effects model
Dunlay et al?® 10/21  17/24 — 9.6 0.67 (0.40 t0 1.13)
King et al2” 28/41  27/31 - 413 078(0.61t01.01)
Stephenson (unpublished) 24/81  27/82 — 123 090 (057t01.42)
Stott and West?' 30/104 32/103 —-— 14.7 0.93 (0.61 to 1.41)
Verheij et al2e 1372 16/72 L 60 081 (0.42t01.56)
Williamson2 23/37  18/32 - 16.3 1.11(0.74 t0 1.64)

Total (95% Cl) 128/356 137/344 - 100.0 0.85 (0.73 t0 1.00)

22=3.21,dt=5,2=1.94 /

s 510
The meta- Favours Favours
analytic, antibiotic placebo

combined, result,
for each of the
two outcomes.

ion of subjects who had not improved clinically at follow up

Relative risk (95% Cl) Weight Relative risk (95% CI)

Study Antibiolic Placebo random effects model (%) random effects model
Brickfield et al** 19.6 0.46 (0.18 t0 1.16)
Dunlay et al®® — 3.6 0.07 (0.00to 1.18
Stott and West?! 10/104 24.4 0.58 (0.28 to 1.21)
Verheij et al?® 9/73 17 24.2 0.52 (0.25 to 1.09)
Williamson2 16/37 11/32 e S 1.26 (0.69 to 2.30)

Total (95% Cl) 40/263  61/252 - 100.0 0.62 (0.36 to 1.09)
x2=821,df=4,Z=1.66

0102 1 510
Favours Favours
antibiotic placebo

Figure 20.5 Forest plots showing relative risks (risk ratios) for two specific outcomes; Productive
cough, and No improvement at follow-up, in a systematic review of antibiotic versus placebo for acute
cough in adults. Reproduced from BMJ 1998, 316: 906-10. Figure 4, p. 909. Figures 2 and 3, p. 908,
courtesy of BMJ Publishing Group

both diamonds cross the line where relative risk = 1. In other words, the efficacy of antibiotic
over placebo for acute cough in this population is not established by this meta-analysis.

However, look back at Figure 20.1, the forest plot for the dietary intervention and blood
cholesterol meta-analysis. Here you will see at the bottom of the figure, the box representing
the overall aggregated mean per cent reduction in cholesterol (labelled ‘Any diet’), which shows
a reduction of 5.3 per cent. This box does not cross the per cent change line, so this is a
statistically significant result, confirmed by the 95 per cent confidence interval of (4.7 per cent
to 5.9 per cent).

Exercise 20.4 (a) Explain why homogeneity across studies is important before a meta-
analysis is performed. (b) What methods are available for the detection of heterogeneity?
(c) What advantage over the results of individual studies does a meta-analysis provide?




Appendix

Table of random numbers

23157 54859 01837 25993 76249 70886 95230 36744
05545 55043 10537 43508 90611 83744 10962 21343
14871 60350 32404 36223 50051 00322 11543 80834
38976 74951 94051 75853 78805 90194 32428 71695
97312 61718 99755 30870 94251 25841 54882 10513
11742 69381 44339 30872 32797 33118 22647 06850
43361 28859 11016 45623 93009 00499 43640 74036
93806 20478 38268 04491 55751 18932 58475 52571
49540 13181 08429 84187 69538 29661 77738 09527
36768 72633 37948 21569 41959 68670 45274 83880
07092 52392 24627 12067 06558 45344 67338 45320
43310 01081 44863 80307 52555 16148 89742 94647
61570 06360 06173 63775 63148 95123 35017 46993
31352 83799 10779 18941 31579 76448 62584 86919
57048 86526 27795 93692 90529 56546 35065 32254
09243 44200 68721 07137 30729 75756 09298 27650
97957 35018 40894 88329 52230 82521 22532 61587
93732 59570 43781 98885 56671 66826 95996 44569
72621 11225 00922 68264 35666 59434 71687 58167
61020 74418 45371 20794 95917 37866 99536 19378
97839 85474 33055 91718 45473 54144 22034 23000
89160 97192 22232 90637 35055 45489 88438 16361
25966 88220 62871 79265 02823 52862 84919 54883
81443 31719 05049 54806 74690 07567 65017 16543
11322 54931 42362 34386 08624 97687 46245 23245

Medical Statistics from Scratch, Second Edition David Bowers
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Solutions to Exercises

Note: Although I have provided complete solutions to the calculating parts of the exercises, I
have offered only brief comments where a commentary is required. This is deliberate, firstly
because [ don’t want to write the book again in terms of the solutions and secondly tutors might
want to tease these answers from the students themselves, perhaps as part of a wider discussion.

1.1 Ethnicity, sex, marital status, type of operation, smoking status, etc.

1.2 Apgar scale, Waterlow scale, Edinburgh Post-natal Depressions scale, Beck Depression
Inventory, SF36, Apache, etc.

1.3 GCS produces ordinal data, which are not real numbers, so can’t be added or divided.
1.4 Height, temp., cholesterol, body mass index, age, time, etc.

1.5 Number of deaths, number of angina attacks, number of operations performed, number
of stillbirths, etc.

1.6 A continuous metric variable has an infinite or uncountable number of possible values. A
discrete metric variable has alimited, countable number of possible values. (a) 7 (0, 1, 2, ..., 6).
(b) Not possible to do this, since number of possible weights is infinite.

1.7 VAS data is ordinal, because these are subjective judgements, which are not measured
but assessed, and will probably vary from patient to patient and moment to moment. So it’s
not possible to calculate average if by this is meant adding up four values and dividing by four,
because ordinal data are not real numbers.

1.8 Age, MC. Social class, O. No. of children, MD. Age at 1st child, MC. Age at menarche,
MC. Menopausal state, O. Age at menopause, MC. Lifetime use of oral contraceptives, N. No.
years taking oral contraceptives, MC. No. months breastfeeding, MC. Lifetime use of hrt, MC.
Years of hrt, MC. Family history of ovarian cancer, N. Family history of breast cancer, N. Units
of alcohol, MD. No. cigs per day, MD. Body mass index, MC. (key: N = nominal; O = ordinal;
MD = metric discrete; MC = metric cont.).

1.9 Maternal age, MC, but given here in ordinal groups. Parity, MD. No. cigs daily, MD.
Multiple pregnancy, N. Pre-eclampsia, N. Cesarean, N.

Medical Statistics from Scratch, Second Edition David Bowers
© 2008 John Wiley & Sons, Ltd
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1.10 Age, MC. Sex, N. Number of rooms in home, MD. Length of hair, O. Colour of hair, N.
Texture of hair, N. Pruritus, N. Excoriations, N. Live lice, O. Viable nits, O.

2.1

Frequency Relative frequency
Cause of injury (number of patients) (% of patients)
Falls 46 61.33
Crush 20 26.67
Motor vehicle crash 6 8.00
Other 3 4.00

2.2
Satisfaction with Frequency Relative frequency
nursing care (number of patients) (% of patients)
Very satisfied 121 25.5
Satisfied 161 33.9
Neutral 90 18.9
Dissatisfied 51 10.7
Very dissatisfied 52 10.9
2.3

% mortality tally Frequency
10.0-14.9 HH 1111 ?
15.0-19.9 vy 8
20.0-24.9 A 5
25.0-29.9 /// 3
30.0-34.9 / 1

Observation: Most ICUs have percentage mortality under 20 per cent.

2.4
Parity Frequency % frequency

0 5 12.50
1 15.00
2 14 35.00
3 10 25.00
4 3 7.5
5 1 2.5
6 0 0

7 0 0

8 1 2.5
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Most women have a parity between 1 and 3, with the largest percentage of women (35 per cent)
having a parity of 1.

2.5 (a)
Cumulative frequency Cumulative relative
GCS Frequency (cumulative no. Relative frequency frequency.
score  (no. of patients) of patients) (% of patients) (Cumulative % of patients)
3 10 10 6.49 6.49
4 5 15 3.25 9.74
5 6 21 3.90 13.64
6 2 23 1.30 14.94
7 12 35 7.79 22.73
8 15 50 9.74 32.47
9 18 68 11.69 44.16
10 14 82 9.09 53.25
11 15 97 9.74 62.99
12 21 118 13.64 76.63
13 13 131 8.44 85.07
14 17 148 11.04 96.11
15 6 154 3.90 100.00

(b) 53.25 per cent
2.6

(a) Better to have parity as the columns and diagnosis as the rows.

Parity (no.)

Diagnosis <2 >2 totals
Benign 22 10 32
Malignant 4 4 8
totals 26 14 40
(b)

Diagnosis Parity (%)

<2 >2
Benign 84.6 71.4
Malignant 15.4 28.6

totals 100.0 100.0
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(c) Only 15.4 per cent of those with a parity of 2 or less had a malignant diagnosis, compared
to nearly twice as many with a parity of 3 or more. Low levels of parity seem to favour a benign
diagnosis.

2.7

OCP  Cases (n=106) Controls (n = 226)

Yes 38 61
No 62 39
totals 100 100

Comment: Only 38 per cent of those receiving a malignant diagnosis (the cases) had at some
time used OCP, whereas 61 per cent of the controls (receiving a benign diagnosis), had used
OCP. This suggests that a woman who had used OCP is more likely to receive a benign diagnosis.
This is not a contingency table. There are two distinct groups of patients, those with a malignant
diagnosis and those with a benign diagnosis.

3.1 Most common type of stroke is non-disabling large-artery in both groups. Second most
common is disabling large artery in both groups.

3.2
Category
[] Very satisfied
. M Neutral
e M Satisfied
[] Dissatisfied
[T Very dissatisfied
10.9%
33.9%
3.3
60
50
d-phenothrin children
> 40 1
)
o
3 30
o
o
L 20
10 1
0
T T T 1
Blonde Brown Red Dark

Hair colour
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3.4
Chart of No. of patients vs Satisfaction with nursing care
180
160
140
o 1204
c
£ 100
@
o
S 80
<]
Z 60
40
20+
O T T T T T
Very satisfied Satisfied Neutral Dissatisfied Very dissatisfied
Satisfaction with nursing care
3.5
60
50
40 [ Blonde
3
s Bl Brown
3 30
2 O Red
B
20 M Dark
10
0
% Malathion % d-phenothrin
3.6 Stacked bar chart
60
M Girls
50 [] Boys
40
>
2
o 30
=)
o
o
& 20
10
0 - T
Blonde Brown Red Dark
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3.7 Schools have very few cases, most only one (20 schools). The majority of the rest have under
10 cases. One school exceptionally has 23 cases.

3.8 Most men have SP levels between four and four and a half, with progressively fewer
and fewer men with less and more SP than this. There is a longish tail of higher values (up

towards six).

3.9
Male attempters
>
[&]
c
[}
>
o
Q
2
15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+
Age
40 Male succeeders
>
o
c
[0}
=}
o
o
B
15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+
Age
3.10
100 - I
g,' 80 -
g 60
3
o\° 40 -
20
O T T T T T
4 5 6 7 8 9
Apgar score

3.11 (a) In both groups minimum cholesterol levels are about 4 mmol/l, maximum levels about
11 mmol/l, but the control group showed slightly higher cholesterol levels throughout. About
half the patients had a cholesterol level of 6 mmol/l and half more.



SOLUTIONS TO EXERCISES 259

(b)
120
Male attempters
100
80

60

40 -

% cum frequency

20

0 T T T T T T T
<15 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+

Age

120 7  Male succeeders

100

[o]
o
1

o]
o
1

% frequency

N
o
1

N
o o
1

<15 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+

Age
About 26 and 33

Comment: although this data is grouped we can see that half of the male attempters were
younger than the youngest half of the male succeeders.

4.1 (a) highest is 70-79, (b) lowest is <15.
4.2 Less skewed.

4.3 (a) Negative. (b) The distribution is positively skewed, but only shows the lowest 95 per cent
of values.

4.4 For attempters, the majority of both men and women are aged between 25 and 35. For
succeeders, the majority are between 25 and 54. In all cases the distributions are positively
skewed.

5.1 (a) Proportion breast fed = 67/149 = 0.4497; percentage = 0.4497 x 100 = 44.97 %.
(b) Proportion bottle fed = 93/182 = 0.5110; percentage = 0.5110 x 100 = 51.10 %.

5.2 (a) Prevalence of genital chlamydia = (23/890) x 100 = 2.58 %.
(b) Incidence of SIDS per year = 10/10000.

Incidence rate per thousand live births per year = 10/10 = 1 SIDS death per 1000 live births
per year.
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5.3 (a) Cases and controls, modal class = II. (b) Satisfied. (¢) PSF = 0.
5.4 Falls.

5.5 (a) Putting the percentage mortality values in ascending order gives:

11.2 128 135 136 137 140 143 147 149 152 161 163 17.7
1 2 3 4 5 6 7 8 9 10 11 12 13

18.2 189 193 193 202 204 21.1 224 228 267 272 294 313
14 15 16 17 18 19 20 21 22 23 24 25 26

Since there is an even number of values, the median percentage mortality is the average of
the two ‘middle’ values, i.e. the average of the 13th (17.7) and 14th (18.2) values, i.e. the
13.5th value. The median is thus = (17.7 + 18.2)/2 = 17.95 %. Or you could have used
the formula, median = ', (n + 1)th value; or ', (26 + 1) = ', x 27 = 13.5th value, as
before.

(b) Attempters. (i) Men. 412 men. So median will be the average of the 206th and 207th values,
which are in the 35-44 age group. (ii) Women. 562 women. So median is the average of the
281th and 282th values, which are in the 35-44 age group.

Succeeders.

(i) Men. 48 men, so median will be average of the 24th and 25th values, so the median must be
in the 35-44 age group. (ii) Women. 55 women, so median is value of the middle, 28th, value,
so the median must be in the 35-44 age group. You might want to repeat this exercise using the
formula.

5.6 (a) mean > median;because oflong tail of values to the right (positive skewness). (b) mean
> median; positively skewed.

5.7 Mean percentage mortality = 18.66 %, compared to median of 17.95 %. These values are
quite similar which suggests that the distribution might be reasonably symmetric (which you
could check with a histogram).

5.8 (a) With outliers, mean = 720.4, median = 500, standard deviation = 622.2. (b) Without
outliers, mean = 610.6, median = 500, standard deviation = 319.8.

5.9 Using 25th percentile is 1/4 (n 4 1)th value, then the 25th percentile = 14.23 %. Using
75th percentile is %, (n + 1)th value, then the 75th percentile = 21.43 %. So a quarter of the
ICUs have a mortality of less than 14.23 %, and a quarter have a mortality above 21.43 %.

5.10 Breast fed, range = 20 to 28 years; bottle fed, range = 20 to 27 years.

5.11 Interquartile range of percentage mortality = (14.23 to 21.43) %. This means that the
range of the middle half (50 per cent) of the ICU % mortality rates is from 14.23 per cent to
21.43 per cent.

5.12 Median (iqr) pain = 51 (23.8 to 87.8). The median pain level is 51 out of a maximum
of 100, so 50 per cent of subjects had pain levels below 51 and half above 51. The interquartile
range indicates that the middle 50 per cent of pain levels lay between 23.8 and 87.8.

5.13 Q2,themedian =6mmol/l; Q1 = 5.5mmol/l; Q3 = 7.0mmol/l;iqr = (5.5 to 7.0) mmol/l.
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5.14

Boxplot of ICU_% Mortality

30 |

y
N
a

!

N
o
L

ICU_% Mortalit

—_
(6]
L

10

Seems to have a long positive tail and positively skewed (or outliers).

5.15 Median percentage DNA damage higher in the control group - about 12 compared to
about eight in survivors. Interquartile range is also slightly larger. Max value much larger in
controls (about 25 compared to 15). Minimums similar.

5.16 You can think of this, roughly speaking, as indicating that the average distance of all of
these cord platelet count values is 69x 10°/1 from the mean value of 306 x 10°/1.

5.17 SD = 5.36 %. With a mean of 18.66 per cent (Exercise 5.6), this suggests that the ICU’s
percentage mortality rates are, on average, 5.36 per cent away from this mean value.

5.18 For data to be Normally distributed, we need to be able to fit in three standard deviations
below the mean (and three above it). In all cases it is impossible (by a long way!) to fit three
SDs below the mean value without going into negative time. This would suggest that all the
distributions are positively skewed.

6.1 The target population is the population at which the research is aimed; this is too large to
be studied in any way. The study population is a more attainable but nonetheless still too large
to be studied. The sample is a sample, representative of the study population. Consider trying to
study the population of people in the UK who are HIV+. This is large population, perhaps many
hundreds of thousands. It will be impossible to identify all, or even a reasonable proportion of
this population. Many of these people will be transient; many will be undiagnosed. Many will
refuse to participate in any research, etc.

6.2 The principal advantage is that a random sample will be representative of the population.
The principal drawback is that a sampling frame is needed to take a random sample. Practically,
sample frames for any realistic population are virtually impossible to obtain.

6.3 Inan observational study, the investigators do not influence in any way the recruitment,
treatment or aftercare of subjects, but may simply ask questions, take measurements, observe
events and so on. In an experimental study, the investigator takes any active role in some aspect
of the study, giving a drug, changing nursing care, etc.
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6.4 A sample to determine levels of satisfaction with an endoscopy procedure. A sample to
determine the prevalence of pressure sores in elderly patients in hospitals.

6.5 (a) Case-control studies are usually quicker, cheaper and better with rare conditions,
than cohort studies. They don’t suffer from subject fall-out over time. (b) Selection of suitable
controls is often difficult. Problems with reliance on accuracy of patient recall, and medical
records. Not good when exposure to risk factor is rare.

6.6 By double-blinding.

6.7 (a) To produce two groups of subjects who are as alike as possible. This will balance all
factors, known and unknown, that might differentially affect the response of the two groups to
the two treatments or treatment and placebo, and includes controlling for confounders. (b) Any
solution to this problem will, of course, depend on the particular set of random numbers used.
My random numbers were: 23 15 (7) 54 (8) 5(9) (0) 1 (8) 3 (7) 2. Since we only have six
blocks we can’t use the random numbers in parentheses. With blocks of four:

Block 1, CCTT; Block 2, CTCT; Block 3, CTTC;
Block 4, TCTC; Block 5, TCCT; Block 6, TTCC

The first number is 2, so the first four subjects are allocated as block 2: C, T, C and T. The next
number is 3, so the next four subjects are allocated: C, T, T and C. Continue this procedure
until there are 20 in each group.

6.8 (a) The authors used a cross-section study of schoolchildren who were given a skin-prick
test of sensitivity to six common allergens (the outcome variable), to determine atopic status,
complimented by a questionnaire completed by parents to elicit pertinent socio-economic
factors (including number of siblings). Possible confounders identified by the researchers were
family history of atopy, sex, socio-economic status, presence of pets, smoking, and age.

(b) The researchers used a double-blind RCT, with patients (aged 2—15 years) randomised
to either CF or PM. To quote, ‘A double-dummy techniques was used: patients randomly
assigned to CF also received a placebo PM, and patients randomly assigned to PM also received
aplacebo CE Drugallocation was determined by acomputer-generated list of random numbers.
The clinical outcome variable was the presence or absence of persistent dysentery after three
days, and acceptable stool quality' and no fever after five days. Confounding is not an issue
in RCTs, since the randomisation process is supposed to produce two groups with identical
characteristics.

(c) The researchers used a cohort design, following a group of 2185 pregnant women becoming
pregnant and having a baby between August 1991 and May 1993. The women were divided into
two groups, normotensive and hypertensive. The outcome variable was defined as a birthweight
below the 10th decile of expected weight (values from reference tables). Potential confounders
were parity, age, socio-economic status, ethnicity, weight and height, smoking status, and use
of aspirin.

(d) The researchers used a case-control study, in which cases were women with Down syndrome
children, and controls were women selected randomly, having children with no congenital

! Satisfying a number of criteria.



SOLUTIONS TO EXERCISES 263

abnormalities. Controls were matched only on birth year. There were 10 controls for each
case! Potential confounding factors were: maternal and paternal ages, marital status (mar-
ried/unmarried), parity, alcohol consumption (yes/no), prior foetal loss, and race (white/
non-white).

(e) The researchers describe their study design as a ‘follow-up’ study. They selected two groups
of patients (and their relatives), one receiving home-based care in one part of a city, the other
hospital-based care, in a different part of the city. The relatives were interviewed at 10 days, one
month and one year, and given questionnaires to assess the burden they were experiencing,
their satisfaction with the service, and the General Health Questionnaire. The patients were
assessed after four days, and then weekly and given a number of psychiatric questionnaires
(Present State Examination, Morningside Rehabilitation Scale). The results from these various
questionnaires constituted the outcome measures.

(f) The researchers used a randomised cross-over design. The subjects were randomised to
either the ‘regular’ treatment arm (two puffs of salbutamol four times daily) or the ‘as needed’
treatment arm (salbutamol used as needed), each arm lasting two weeks. Patients were asked
to record their peak expiratory flow rate (PEFR) morning and evening before inhaler use, the
number of asthma episodes, and the number of as-needed salbutamol puffs used for symptom
relief.

(g) The researchers summarise their design as follows, ‘All new clients referred for counselling
by GPs were asked to complete a questionnaire before and after counselling’ This contained:
three psychological scales to measure anxiety and depression, self-esteem, and quality of life;
and questions on levels of satisfaction with the counselling service. GPs were also asked to
complete a questionnaire on their level of satisfaction with the service. The prescribing of
anxiolytic/hypnotic and anti-depressant drugs, and the number of referrals to other mental
health services in practices with and without counsellors was compared.

7.1 (a) A population parameter is a defining characteristic of a population, for example
the mean age of all men dying of lung cancer in England and wales. The population pa-
rameter is unknown but can be estimated from a representative sample drawn from this
population. (b) A sample will never have exactly the same characteristics as a population
because there is always the possibility that those members of a population not included in
the sample may in some way be different from those included. (c¢) Determining the param-
eters of a target population is the underlying objective, but in practice this may prove to be
difficult if not impossible. The study population is the population that, in practice, can be
sampled.

7.2 They may be more wealthy or poorer, or older, or ethnically more or less mixed, etc.

8.1 (a) (i) p(benign) = 226/332 = 0.681; (ii) p(malignant) = 106/332 = 0.319. Notice these
two probabilities sum to 1. (b) p(postmenopausal) = 200/332 = 0.602; (c) p(>3 children) =
112/332 = 0.337.

8.2 (a)p(age <30) = (0.355 4 0.206 + 0.043) = 0.604. (b) p(age >29) = (0.248 4+ 0.148) =
0.396.

8.3 (a)0.99.(b) 0.165
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8.4 (a) Men.

Alcohol consumption

(beverages/week)
Dead <1 >69 Totals
Yes 195 66 261
No 430 145 575
Totals 625 211 836

(i) Absolute risk of death if consuming <1 beverage per week = 195/625 = 0.312. (ii) Absolute
risk of death if consuming >69 beverages per week = 66/211 = 0.313.

(b) Women.

Alcohol consumption

(beverages/week)
Dead <1 >69 Totals
Yes 394 1 395
No 2078 19 2097
Totals 2472 20 2492

(i) Absolute risk of death if consuming < 1 beverage per week = 394/2472 = 0.159. (ii) Absolute
risk of death if consuming >69 beverages per week = 1/20 = 0.050.

Interpretation of results. For men there is approximately the same absolute risk of death among
those consuming <1 beverage per week and those consuming >69 beverages per week (0.312
versus 0.313). For women the absolute risk of death if consuming <1 beverage per week is
about three times the absolute risk for those consuming >69 beverages per week (0.159 versus
0.050). This perhaps surprising result may be due to the very small numbers consuming >69
beverages per week, which makes the result very unreliable.

8.5 (a) Under 35.

Down syndrome baby

Smoked  Yes No

Yes 112 1411
No 421 5214
Totals 533 6625

(i) The odds that a woman having a Down syndrome baby smoked = 112/421 = 0.2660. (ii)
The odds that a woman having a healthy baby smoked = 1411/5214 = 0.2706.
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(b) > 35
Down syndrome baby
Smoked  Yes No
Yes 15 108
No 186 611
Totals 201 719

(i) The odds that a woman having a Down syndrome baby, smoked = 15/186 = 0.0806. (ii)
The odds that a woman having a healthy baby, smoked = 108/611 = 0.1768.

Interpretation of results. Among the under 35 mothers there is little difference in the odds for
Down syndrome between smoking and non-smoking mothers (0.2660 versus 0.2706). Among
mothers >35, the odds for Down syndrome among smoking mothers is about a half the odds
for non-smoking mothers (0.0806 versus 0.1768).

8.6 (a)p = 0.0806/(1 + 0.806) = 0.0746; (b) p = 0.1768/(1 + 0.1768) = 0.1502.

8.7 (a) Men: risk ratio of death among those drinking >69 beverages per week compared to
those drinking <1 beverage per week = 0.313/0.312 = 1.003. (b) Women: risk ratio = 0.050/
0.159 = 0.314.

Interpretation of results. For men arisk ratio very close to 1 implies that that there is no increased
or decreased risk of death among those drinking <1 compared to those drinking >69 beverages
per week. For women, the risk of death among the heavy drinkers appears to be only about a
third the risk for light (or none) drinkers. But small numbers in the sample are not reliable.

8.8 (a) Mothers <35. Odds ratio for a woman with a Down syndrome baby having smoked,
compared to a woman with a healthy baby = 0.2660/0.2706 = 0.9830. (b) Mothers >35. Odds
ratio = 0.0806/0.1768 = 0.4558.

Interpretation of results. In younger mothers, the odds ratio close to 1 (0.9830) implies that
smoking neither increases nor decreases the odds for Down syndrome. In older mothers, the
odds ratio of 0.4558, implies that mothers who smoked during pregnancy have under half the
odds of having a Down syndrome baby compared to non-smoking mothers.

8.9
Periodontitis
Death from CHD Yes No Totals
Yes 151 92 243
No 1635 3450 5085
Totals 1786 3542 5328

Absolute risk of dying from CHD with periodontitis = 151/1786 = 0.084. Absolute risk of
dying from CHD with no dental disease = 92/3542 = 0.026. So risk reduction = 0.084 —
0.026 = 0.058. Therefore NNT = 1/0.058 = 17.2, i.e. 18 people.
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9.1 The smaller the s.e. of the sample mean, the more precise the estimate of the population
mean. In this case the sample mean vitamin E intake of 6.30 mg (non-cases), has a s.e. of 0.05
mg, so we can be 95 per cent confident that the population mean vitamin E intake (non-cases)
is no further than two s.e.s from this mean, i.e. within & 0.10 mg. The largest s.e., 5.06 mg, and
therefore the least precise estimate of the population mean, is that for vitamin C (cases).

9.2 (a) Cases. Sample mean age = 61.6 y, sample s.d. = 10.9 y, n = 106. Thus s.e.(x) =
10.9/,/106 = 1.059. The 95 per cent confidence interval is therefore: (61.6 £ 2 x 1.059), or
(59.582 t0 63.718) years. (b) Controls. Sample mean age = 51.0 y, sample s.d. = 8.5y, n = 226.
Thus s.e.(k) = 8.5/4/226 = 0.565. The 95 per cent confidence interval is therefore: (51.0 & 2 x
0.565), or (49.870 to 52.13) years. The fact that the two CIs don’t overlap means that we can
be 95 per cent confident that the two population mean ages are significantly different.

9.3 For the integrated care group, over 12 months the sample mean number of admissions is
0.15. The 95 per cent confidence interval means we can be 95 per cent confident that the interval
from 0.11 to 0.19 will contain the population mean number of visits for the population of which
this is a representative sample. For the conventional care group the sample mean number of
visits is lower, 0.11, and the 95 per cent confidence interval means we can be 95 per cent
confident that the interval from 0.08 to 0.15 will contain the population mean number of visits.

0.29(1 — 0.29) ,
9.4 p=0.290,s.e.(p) =,/ ———— =0.030.95 % Cl is:
226

(0.290 — 2 x 0.030 to 0.290 + 2 x 0.030) = (0.230 to 0.350)

So we can be 95 per cent confident that the interval from 0.230 to 0.350 (or 23.0 to 35.0 per cent),
will contain the population proportion of women who are pre-menopausal.

9.5 For all three time periods the median differences in pain levels are reasonably similar
(38, 31 and 35), as are the 95 per cent confidence intervals, which all overlap, indicating no
statistically significant difference between the two groups at any time period.

10.1 Three of the confidence intervals include zero, so there is no statistically significant
difference in population mean infant weights between non-smoking and smoking mothers.
The confidence interval for the difference in the mean weight of non-smoking mothers and
mothers smoking 1-9 cigarettes per day, (—118 to —10) g, for boys, does not include zero, so
this difference in population mean weights is statistically significant.

10.2 That for the radius, which has the narrowest confidence interval.

10.3 Because overlapping confidence intervals imply that the difference is not statistically
significant.

10.4 The difference in sample median alcohol intakes is 5.4 g. The 95 per cent confidence
interval of (1.2 to 9.9) g, does not include zero, so we can be 95 per cent confident that the
population difference in median alcohol intake is statistically significant and lies somewhere
between 1.2 gand 9.9 g.

11.1 For gingivitis, the confidence intervals for both CHD and mortality contain 1, so dif-
ference in risk compared to no disease is not statistically significant. For periodontitis neither
confidence interval includes 1, so the difference in risk is statistically significant. For no teeth,
the confidence interval for CHD includes 1, so not statistically significant, but for mortality,
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the confidence interval does not include 1, so the difference in risk compared to no disease is
statistically significant.

11.2  (a) Age and sex are notorious as confounders of many other variables, and adjustment
for them is nearly always advisable. (b) With no exercise taken as the referent state, the odds ratio
for all three age groups are less than 1, suggesting perhaps that exercise at any age reduces the
odds for a stroke. However, only exercise taken between 15 and 40 has a statistically significant
effect, since the confidence interval for the 40-55 year-old group, (0.3 to 1.5), includes 1. Note,
by the way, that a 25-year-old and a 40-year-old individual could each be allocated to either
one of two groups. The groups are not well defined.

11.3 The following risk factors are statistically significant for increasing the risk of throm-
boembolic events: being aged <19; having any parity other than 1; smoking > 10 cigarettes
per day; having multiple pregnancy; having pre-eclampsia; having a cesarean. The latter two
appear to increase the risk the most.

12.1 (a) Is the proportion of women using the clinic same as proportion of men, i.e. 0.5?
(b) Hy: w = 0.5 (7t is population proportion of women using clinic). (c) Yes, reject because the
p-value is less than 0.05. The proportion of women is #not 0.5, i.e not the same as men. (d) No,
don’t reject because the p-value is notless than 0.05. The proportion of women using the clinic
is the same as men.

12.2  Since both p-values (0.25 and 0.32) exceed 0.05, then there is no statistically significant
difference in the two means.

12.3 Meanage, mean age at menopause, and mean body mass index are statistically significant,
since their p-values are all less than 0.05. The other four variables show no statistically significant
difference since their p-values are all greater than 0.05.

12.4 (a) A false positive is when the null hypothesis is rejected when it shouldn’t have been,
because it is true, i.e. an effect is detected when there isn’t one. (b) A false negative is when the
null hypothesis is not rejected when it should have been, because it is false, i.e. a real effect is
not detected.

12.5 (a) We want to minimise the probability of a type I error, i.e. a false positive. For
example, we might have a test, the results of which, if positive, will lead to an unnecessary
intrusive intervention. (b) Because if « is made very small, 8 would be become unacceptably
large because of the trade-off between the two measures.

12.6 (a) (i) n= (2 x 122/10%) x 10.5 = 31; (ii) n = (2 x 12%2/10%) x 14.9 = 43; (iii)) n =
(2 x 122/10%) x 11.7 = 34. (b) (i) n = [(0.4 x 0.6 + 0.20 x 0.80)/0.20%] x 10.5 = 105;
(i) n=1[(0.4 x 0.6 4 0.20 x 0.80)/0.20°] x 14.9 = 149; (iii) n = [(0.4 x 0.6 4 0.20 x
0.80)/0.20%] x 11.7 = 117.

12.7 P, =0.70. P, = 0.80, so (P, —P,) = —0.10. Therefore, (a) n = [(0.70 x 0.30 + 0.80 x
0.20)/ —0.10%] x 7.8 = 289; (b) n = [(0.70 x 0.30 4+ 0.80 x 0.20)/ —0.10%] x 14.9 = 551.

13.1 There are only two statistically significant risk factors, both of which show higher risks
for the alteplase patients (i.e. rr < 1); CAPG, rr = 0.884, p-value = 0.049, see table footnote
for meaning of CAPG; and a Killip classification > 1; rr = 0.991, p-value = 0.026. Anaphylaxis
is a complication which is almost statistically significant (rr = 0.376, p-value = 0.052, and we
might want to consider it so.
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13.2 In the model with the seven variables shown, all are statistically significant except pas-
sive smoking from husband, and at work. With only the first five variables included, plus

passive smoking from husband and/or at work, makes this last variable statistically significant
(p-value = 0.049).

14.1 Expected values:

Apgar <7
Yes No Totals
Yes 3.667 6.333 10
Mother smoked No 7.333 12.667 20
Totals 11 19 30

14.2  The test statistic = /{(8 — 3.667)%/3.667 + (3 — 7.333)?/7.33 + (2 — 6.333)?/6.33 +
(17 — 12.67)%/12.667} = /12.109 = 3.480. Since we have a 2 x 2 table, then we are in the
first row of Table 14.3, because (2 —1) x (2—1) =1 x 1 = 1, and the critical chi-squared
value which must be exceeded to reject the null hypothesis is 3.85. The test statistic value of
3.480 does not exceed this value, so the evidence is not strong enough for us to reject the null
hypothesis of equal proportions of smokers in both Apgar groups.

The null hypothesis of equal proportions is equivalent to a null hypothesis of independent
variables. Since we have rejected the former we have also rejected the latter, so these variables
are independent.

14.3 (i) No trend across categories of social class, p-value = 0.094; (ii) statistically significant
trend across the two categories (yes/no) of oral contraceptive use, p-value = 0.000; (iii) no trend
across categories of alcohol consumption, p-value = 0.927; (iv) no trend across categories of
cigarette consumption, p-value = 0.383.

15.1
Scatterplot of Apgar_mat_unit vs Wgt_Mat_unit
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Association seems to be strong and positive.
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15.2 The association seems to be strong and positive.
15.3 The association appears to be strong and positive, but does not appear to be linear.

15.4 (a) All are statistically significant. (b) 0.896 for mothers less than two years from birth
date. (c) 0.632 for mothers where the baby concerned was > 3rd born.

16.1 Yes. No.

16.2 Contingency table:

Observer 1

<16 >16 Totals

<16 5 2 7
Observer2 >16 0 9 9
Totals 5 11 16

(a) Observed proportional agreement = (5 + 9)/16 = 0.875.

(b) Expected values are as follows:

Observer 1

<16 >16

<16 2.19 4.81

Observer2 16 581 619

Expected agreement = (2.19 + 6.19)/16 = 0.523. So kappa = (0.875 — 0.523)/(1 — 0.523) =
0.738. From Table 16.3, chance adjusted agreement is very good.

17.1 Scatterplot.

Scatterplot of Y vs X

Equation is: Y= 6.0 - 0.5X
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17.2  (a) best straight line by eye:
35
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Equation is: UC =1 + 0.85 x CD. By 40.85.

(b) %M = 46.886 — 0.620E. A decrease is % mortality of 0.620 %. (c) % exposed at work =
12 + 0.92 x % current smokers. 22 %.

17.3 mean BMI = 41.902 kg/m?.

17.4 (a) All p-values < 0.05 so all statistically significant. (b) Will decrease bmi by 0.025 for
each 1 year increase. (c) Adjusted R* was 0.635, now 0.638, so marginal improvement. (i) 18.42;
(ii) 10.95.

17.5

Subject Age D, D,

1 50 1 0
2 55 0 0
3 35 0 1

17.6 (a) Severity of disability; mental disorders; respiratory system disorders; numbers of
residents in private residential homes (all p-values < 0.05). (b) (i) natural log of utilisation
time increases by 0.006, or 1.006 minutes (taking antilog). (ii) increase of 0.043 in natural log,
or 1.044 minutes. (c) About 11 per cent (see R? in table footnote).

17.7 (a) Age; age squared; family history of hypertension; calcium intake. (b) We can be
95 per cent confident that the population regression parameter on age is between 0.28 and
0.64. (c) The blood lead model (largest age coefficient value).

17.8 See text.

18.1 Using the formula, odds = probability/(1 — probability) from Chapter 8. When
P(Y = 1) = 0.4286 when OCP = 0, then odds = 0.7501. When P(Y = 1) = 0.2247, when
OCP =1, odds = 0.2898. The odds ratio = 0.2898/0.7501 = 0.386.

18.2 (a) Because there are only two values for the dependent variable. It would be better to
group the variables first and plot proportions in each group. (b) Yes, the confidence interval
for odds ratio of (1.08 to 1.14) does not include 1. (c) P(Y = 1) = e(~6-4672+0.10231 x age)
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(d)(i) 0.1343. (ii) 0.2707. (e) 0.8657, 0.7299. Odds ratio = 0.4182. A woman aged 45 has only
about 41 per cent the odds of a malignant diagnosis as a woman aged 50. (f) The antilog, of
0.10231 equals 1.108 (rounded to 1.11 by Minitab). (g) 10 x 0.10231 = 1.0231. antilog. of
1.0231 = 2.78. In other words an increase in age of 10 years increases the odds ratio by 2.78.

18.3 BMI is statistically significant since the p-value is < 0.05 and confidence interval does
not include 1.

18.4 OCP is not statistically significant; p-value 0.278 is > 0.05; and confidence interval
includes 1. Age and BMI both statistically significant; p-values are < 0.05 and neither confidence
interval includes 1.

18.5 The null hypothesis is that the goodness-of-fit is good. The p-value here is 0.958, which
is not less than 0.05, so we cannot reject the null hypothesis and conclude that the fit is good.

19.1
1 2 3 4 5 6 7 8
Day Numberstill Withdrawn Deathsin Number Probability — Probability =~ Cumulative
instudyat  prematurely day ¢ atriskin  ofdeathin of surviving probability
start of up to day ¢ day ¢ day ¢ of surviving
day ¢ day t to day ¢
t n w d r d/r p=1-—d/r S
3 8 0 1 8 1/8 =0.125 0.875 0.875
8 7 0 1 6 1/6 = 0.167 0.833 0.758
13 6 1 1 4 1/4=10.25 0.75 0.569
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19.2 Raltitrexed; about 5 months. Lokich; about 5'/, months. de Gramont; about 6 months.

19.3  Since the p-value is < 0.05, then a null hypothesis of no difference in survival times can
be rejected.
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19.4 The log-rank test p-value is 0.03. Since this is < 0.05 we can assume that there is a
statistically significant difference between the treatments. The combination seems to work best
since it shows the lowest percentage treatment failure.

19.5 All confidence intervals include the value 1 so none are statistically significant.

19.6 In the multivariate (adjusted) results, the first five are all statistically significant since
none of the confidence intervals includes 1. This is the same as for the five univariate analyses.
The last, cigarette smoking at enrolment, is not statistically significant since this confidence
interval does include 1; which is also not statistically significant in the univariate analysis. None
of the other variables are statistically significant in the univariate analyses.

20.1 See the text.

20.2 Risk ratio (relative risk) shown by a. Size of sample not indicated in this figure.
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20.3 (a) See the list in the section headed ‘Publication and other biases’ (b) On the question
of publication bias and this funnel plot the authors comment, ‘Visual assessment shows some
asymmetry, which indicates that there was selective non-publication of smaller trials with less
sizeable benefits. However, in formal statistical analysis the degree of asymmetry is found to
be small and non-significant. Bias does not therefore seem to have distorted the findings from
this meta-analysis.

20.4 (a) If studies are not similar in objective, in outcome measure, in design, have similar
subjects and so on then it is not sensible to combine them. (b) ’Abbé plots; Mantel-Haenszel
test; chi-squared test. (c) A larger combined sample is likely to be more reliable (precise) than
a number of smaller samples.
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«a see significance level
absolute risk 100-1, 106-7
absolute risk reduction (ARR) 106-7
adjustment
confidence intervals 136, 137-8
confounders 81
goodness-of-fit 196-7, 203
hypothesis tests 158
agreement 181-6
association 186
Bland-Altman charts 185-6
Cohen’s kappa 1824
continuous data 184-6
limits 185-6
ordinal data 184
weighted kappa 184
analysis of variance (ANOVA) 209-11
APACHE II scores 33—4
Apgar scores 25-6, 38, 121, 128, 148,
174
arithmetic mean see mean
ARR see absolute risk reduction
assessment bias 86
association 171-80
agreement 186
confidence intervals 179
correlation coefficients 175-80,
183
definition 171-2
linear 172-3, 175
linear regression 190-1, 192
negative 172-3
non-linear 173, 175
p values 176-9
positive 172-3

statistical significance 1767
strength 174, 175-80
see also scatterplots

attitudes 77

automated variable selection 200-2

B see type Il errors
backwards elimination 202-3
backwards selection 201

bar charts 31-5, 41, 44-7
beneficial risk factors 105
bimodal distribution 47
binary data 153, 214-15
binomial distribution 48, 116
Bland-Altman charts 185-6
blinding 86

block randomisation 85
boxplots 41, 61-2, 63

British Regional Heart Study 36

case-control studies 11
association 177
confidence intervals 137
hypothesis tests 146, 153, 158
matched 81, 82, 102
odds ratios 105-6
probability 98
risk 102-3
study design 80-3
unmatched 81-2

case-series studies 76

categorical data 4-7, 10
agreement 184
association 180
charts 30—4, 37-8, 40-1
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categorical data (Continued)
confidence intervals 127, 131
frequency tables 18-20, 23—6
hypothesis tests 145, 151, 161-8
linear regression 199-200
numeric summary values 55, 57, 64
ordered 166-8
causal relationships 77, 180, 190-1
censored data 228
chance-corrected proportional agreement statistic
179, 182—4
charts 29-41
bar charts 31-5, 41
boxplots 41, 61-2, 63
categorical data 30-4, 37-8, 40-1
continuous data 35-7, 40—1
cumulative data 37-41
discrete data 34-5, 37-8, 40—1
distribution 44-7
metric data 34-8, 40—1
nominal data 30—4, 41
ogives 38—40, 41, 60-1
ordinal data 30-4, 37-8, 40—1
pie charts 30-1, 41
step charts 37-8, 41
time series charts 40—1
see also histograms
chi-squared test
hypothesis tests 145, 151, 161-8
logistic regression 221, 222
survival 234
clinical databases 240, 241
clinical trials 84
clustered bar charts 32—4
coding design 199-200
coefficient of determination 197
Cohen’s kappa 179, 182—4
cohort studies
charts 36-7
probability 100-1, 102, 104, 106—7
study design 78-80, 83
survival 238
colinearity 198
comparative studies 13
confidence intervals 111-18
agreement 183
association 179
difference between population parameters
119-31
hypothesis tests 117, 119-31, 149, 156, 163
independent populations 120-5, 127-31, 133—4
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linear regression 195-6, 198

logistic regression 217

matched populations 125-6, 131

mean 112-16, 120-6, 134

median 117-18, 127-31

Minitab 120, 123, 128

Normal distribution 112-13, 120,

127

odds ratios 134-5, 137-8

proportions 116-17, 126-7

ratio of two population parameters 133-8

risk ratios 134-6

single population parameter 111-18

SPSS 120, 122-3

standard error 112-16

survival 237-8

systematic review 242-3
confounders

linear regression 202-3, 204-5

logistic regression 222

risk ratios 136

study design 81, 84
consecutive sampling 74—5
constant coefficient 191
contact sampling 74-5
contingency tables 25-6

chi-squared test 162—4

logistic regression 221

risk 104

study design 79-80, 82
continuous metric data 7-8, 10

agreement 1846

association 176, 180

charts 35-7, 40-1

frequency tables 20-2

linear regression 193, 194, 207

numeric summary values 57, 64
control groups 84, 86
controlling for confounders 81
correlation coefficients 175—-80, 183
counts 9
covariates see independent variables
Cox’s regression model 236
cross-over randomised control trials 86—8
cross-section studies 12

association 177-80

study design 76-8
cross-tabulations 25-6
cumulative data 37-41
cumulative frequencies 23—4

see also ogives



data, definition 3—4
data collection see sampling
databases 240, 241
death see survival
deciles 57
decision rules 143—4
dependent variables 72, 193, 207,
214-17
descriptive statistics
charts 29-41
definition 17-18
distribution 43-9
frequency tables 5, 6, 17-27
numeric summary values 51-68
design variables 199-200
deviance coefficient 222
diagnostics 205-9
discrete metric data 9, 10
charts 34-5, 37-8, 40-1
frequency tables 23
numeric summary values 57, 64
dispersion measures 52, 57-68
distribution 43-9
bimodal 47
binomial 116
hypothesis tests 144—5
numeric summary values 55, 57, 58,
65-8
outliers 44
skew 44-5, 55, 57, 62, 64, 131
symmetric 44, 46
transformed data 668
uniform 43
see also Normal distribution

double-blind randomised control trials

86
drop-out 89
dummy variables 199-200

Edinburgh Maternal Depression
Scale 116
elimination methods 202-3
errors
blinding 86
drop-out 89
hypothesis tests 149-50
linear regression 194, 207-8,
211
recall bias 83
sampling 73, 83, 94, 112
selection bias 83, 845
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estimates 94-5

see also confidence intervals
exclusion criteria 240-1
expected values 163—6, 182
experimental studies 83-90
explanatory variable see independent

variables

extraction of data 240-1

false negatives/positives 150
Fischer’s exact test 145
follow-up see cohort studies
forest plots 241-3, 250
forwards elimination 202
forwards selection 201
frequency matching 81-2
frequency tables 5, 6, 17-27
categorical data 18-20, 23-6
contingency tables 25-6
continuous data 20-2
cross-tabulations 25-6
cumulative frequencies 23—4
discrete data 23
grouping data 20-2
metric data 20-3
nominal data 18-19
open-ended groups 22
ordinal data 20, 23—4
ranking data 27
relative frequency 19-20
funnel plots 244-6

GCS see Glasgow Coma Scale
generalisation see statistical inference
generalised linear model 209

Glasgow Coma Scale (GCS) 5-7, 23—4
goodness-of-fit 196-7, 203—4, 222-3
grouped data 20-2, 35-7

grouped frequency distributions 21-2

hazard function 236

hazard ratios 235-6

heterogeneity 24650

histograms 35-7, 41
confidence intervals 120
distribution 44—6, 56, 65, 67
linear regression 211
numeric summary values 56, 65,

67
homogeneity 246-50
homoskedasticity 195
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Hosmer-Lemeshow statistic 222-3
hypothesis tests

independent variables
linear regression 193, 199-201, 204, 207-8

chi-squared test 145, 151, 161-8, 221,
222,234

confidence intervals 117, 119-31, 149,
156, 163

decision rules 143—4

difference between population parameters
141-54

equality of population proportions 161-8

errors 149-50

Fischer’s exact test 145

independent populations 119-25, 127-31,
145-9, 151, 1524, 162-3

Kruskal-Wallis test 145

logistic regression 221, 222

McNemar’s test 145, 162

Mann-Whitney rank-sums test 127-31, 145,
147-9, 151

matched populations 125-6, 131, 145, 147, 149,
151, 162

matched-pairs ¢ test 125-6, 145, 147, 151

mean 145-7

median 145, 147-9

Minitab 146, 148-9

Normal distribution 144-5

p values 143—4, 146-9, 156-9, 164-6, 168

paired populations 145

power 150, 151-2, 168

procedure 143

proportions 161-8

ratio of two population parameters 155-9

research questions 142

rules of thumb 152-4

significance level 144, 150, 153

SPSS 146, 148

trend 166-8

two-sample ¢ test 120-5, 145-6, 151, 222

Wilcoxon signed-rank test 117, 131, 145, 149,
151

see also null hypothesis

logistic regression 216, 221-2
inferences 77, 93-5
informed guesses see confidence intervals
Injury Severity Scale (ISS) 184
intention-to-treat 89
interquartile range (iqr) 58-61, 63—4, 232
interval property 8
iqr see interquartile range
ISS see Injury Severity Scale

journals 244

Kaplan-Meier curves 230-1, 233-5
Kaplan-Meier tables 228-30

Kappa statistic 179, 182—4

Kendal’s rank-order correlation coefficient 180
Killip scale 157

Kruskal-Wallis test 145

L Abbé plots 247

left skew see positive skew

Levene’s test 123

limits of agreement 185-6

linear association 172-3, 175

linear regression 189-211
analysis of variance 209-11
association 190-1, 192
assumptions 194-5, 205-9
causal relationships 190—1
coding design 199-200
colinearity 198
confounders 202-3, 204-5
design variables 199-200
diagnostics 205-9
goodness-of-fit 196-7, 203—4
Minitab 196
model-building 200-1
multiple 197-9, 203, 205-9
nominal independent variables 199-200
ordinary least squares 1938, 205, 209

incidence rate 53—4
inclusion criteria 240-1
independent populations

population regression equation 194
sample regression equation 193
SPSS 195-6

difference 120-5, 127-31

hypothesis tests 145-9, 151, 1524,
162-3

Mann-Whitney rank-sums test 127-31

ratios 133—4

two-sample ¢ test 120-5

statistical significance 195-6
variable selection 200-3
variation 190-1

location measures 52, 54—7, 59-61

log-log plots 238

log-rank test 233-5



logistic regression 213-23
binary dependent variables 214-15
goodness-of-fit 222-3
maximum likelihood estimation 217-18
Minitab 217-20
model-building 221-2
multiple 221
odds ratios 217, 218-19, 220
regression coefficient 219
SPSS 217, 220-1
statistical inference 220-1
longitudinal studies see case-control studies;
cohort studies

McNemar’s test 145, 162
Mann-Whitney rank-sums test 127-31, 145,
147-9, 151
Mantel-Haenszel test 248-50
manual variable selection 200, 202-3
matched case-control studies 81, 82, 102
matched populations 125-6, 131, 145, 147, 149,
151, 162
matched-pairs ¢ test 125-6, 145, 147, 151
maximum likelihood estimation (MLE) 217-18
mean
confidence intervals 112—16, 120-6, 134
hypothesis tests 145—7
linear regression 197—8
numeric summary values 55, 57
standard error 112-16
statistical inference 94
systematic review 242-3, 249
measurements 8, 10
median
confidence intervals 117-18, 127-31
hypothesis tests 145, 147-9
numeric summary values 54-5, 57, 59-61
statistical inference 94
survival time 231-2
meta-analysis 239, 240, 246-50
homogeneity/heterogeneity 24650
L’Abbé plots 247
Mantel-Haenszel test 248—50
metric data 4, 7-9, 10
agreement 184—-6
association 176, 180
charts 34-8, 40-1
confidence intervals 120, 126, 127, 131
frequency tables 20-3
hypothesis tests 145, 1523
linear regression 193, 194, 207
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logistic regression 222

numeric summary values 57, 64
MLE see maximum likelihood estimation
mode 54, 57
model-building 200-1
mound-shaped see symmetric distribution
multi-colinearity 198
multiple linear regression 197-9, 203, 205-9
multiple logistic regression 221
multivariate analysis 223, 238

n-tiles 57
negative
association 172-3
outcomes 244
skew 44-5, 55, 62
NNT see number needed to treat
nominal categorical data 4-5, 10
agreement 184
charts 304, 41
frequency tables 18-19
linear regression 199-200
numeric summary values 57, 64
non-linear association 173, 175
see also logistic regression
non-parametric tests 127, 144-5, 151
Normal distribution 48-9
association 176
confidence intervals 112—13, 120, 127
hypothesis tests 144—5
linear regression 194, 207, 209
probability 100
standard deviation 65-8
null hypothesis
difference between population parameters
142-5, 148, 150
ratio of two population parameters 1556, 158,
163—4, 168
survival 233—4
number lines 6
number needed to treat (NNT) 98, 1067
numeric summary values 51-68
dispersion measures 52, 57-68
distribution 55, 57, 58, 65—8
incidence rate 53—4
interquartile range 58-61, 63—4
location measures 52, 54—7, 59—61
numbers 52-3
ogives 60—1
outliers 55, 57, 58, 62
percentages 52—3
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numeric summary values (Continued)
percentiles 56—7
prevalence 53—4
proportions 52-3
quantitation 52
range 58
skew 55, 57, 62, 64
standard deviation 62—8
transformed data 66-8

observed values 163—6
odds 101-2, 103
odds ratios 105-6
confidence intervals 134-5, 137-8
hypothesis tests 158-9
logistic regression 217, 218-19, 220
systematic review 245-6, 248-9
ogives 38—40, 41, 60-1
OLS see ordinary least squares
open trials 86
open-ended groups 22
opinions 77
ordered categorical data 166—8
ordering of data 5-7, 10, 18-20
ordinal categorical data 5-7, 10
agreement 184
association 180
charts 30—4, 37-8, 40-1
confidence intervals 127, 131
frequency tables 19-20, 23—4
hypothesis tests 145
numeric summary values 55, 57, 64

ordinary least squares (OLS) 193-8, 205, 209

outcome variables see dependent variables
outliers

distribution 44

frequency tables 22

meta-analysis 247

numeric summary values 55, 57, 58, 62
OXCHECK Study Group 39

p values
association 176-9

hypothesis testing 143—4, 1469, 156-9, 164-6,

168
linear regression 195-7, 198, 201-2
logistic regression 217, 220, 221-2
survival 234, 237-8
Palliative Care Outcome scale (POS) 183
parallel design 86
parametric tests 127, 144-5, 151

INDEX

parsimony 202
Pearson’s correlation coefficient 175-7
percentages
cumulative frequency 38—40
frequency 19-20
numeric summary values 52-3
percentiles 56—7
period prevalence 53
pie charts 301, 41
placebo bias 86
point-biseral correlation coefficient 180
point prevalence 53
Poisson distribution 48-9
population
correlation coefficients 175-7
difference between parameters 119-31,
141-54
logistic regression model 215-16
mean 112-16, 120-6, 134, 145-7
median 117-18, 127-31, 145, 147-9
odds ratios 137, 158-9
proportions 116-17, 126-7
ratio of two parameters 133-8, 155-9
regression equation 194
risk ratios 155-6
single parameter 111-18
statistical inference 93-5
study design 72-3
survival 230
see also confidence intervals; hypothesis
tests
POS see Palliative Care Outcome scale
positive
association 172-3
outcomes 244
skew 44-5, 55, 57, 62
power of a test 150, 151-2, 168
predictions 196
predictors see independent variables
prevalence 534, 77
probability 97-100
calculation 99-100
case-control studies 98, 102—-3, 105-6
cohort studies 100-1, 102, 104, 106—7
definition 98
logistic regression 215
Normal distribution 100
number needed to treat 98, 106—7
odds 101-2, 103
odds ratios 105-6
Poisson distribution 48-9
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risk 100-1, 102-3

risk ratios 104

survival 228-31
proportional frequency 99
proportional hazards 236-8
proportions

confidence intervals 116-17, 126—7

hypothesis tests 161-8

numeric summary values 52-3

populations 161-8

samples 116
prospective studies see cohort studies
Psychiatric Symptom Frequency (PSF) scale 467
publication bias 244, 245

quintiles 57

random number tables 85, 251
randomisation 74, 84—5, 88—9
randomised controlled trials (RCT)
hypothesis tests 146, 151, 1567, 165
study design 85, 86-90
systematic review 242
range 58
ranked data
frequency tables 27
Kendal’s rank-order correlation coefficient
180
log-rank test 233-5
Mann-Whitney rank-sums test 127-31, 145,
147-9, 151
Spearman’s rank correlation coefficient 177-80,
183
Wilcoxon signed-rank test 117, 131, 145, 149,
151
ratio property 8
RCT see randomised control trials
recall bias 83
reference values 102
regression see linear regression; logistic regression
relative frequency 19-20
cumulative 38-9, 60
relative risk see risk ratios
research questions 142
residuals 194, 207-8, 211
response bias 86
response variables see dependent variables
retrospective studies see case-control studies
review see systematic review
right skew see negative skew
risk 100-1, 102-3, 217
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risk ratios 100, 104
confidence intervals 134-6
hypothesis tests 155-7
survival 237
systematic review 242, 245, 248, 250
rules of thumb 1524

sample
correlation coefficients 175-80
logistic regression model 216
mean 112, 116, 120-2, 134
odds ratios 137
percentage 94
proportions 116
regression equation 193
statistic 94
survival 230
sampling 72, 73
errors 73, 83,94, 112
frames 74
randomisation 74, 84-5, 88—9
statistical inference 93-5
types 74-5
scatterplots 172-5, 176
linear regression 192, 196, 201, 208-11
logistic regression 214—16
selection bias 83, 84-5, 88—9
significance level () 144, 150, 153
simple bar charts 31-2
simple random sampling 74
skew 44-5, 55, 57, 62, 64, 131
slope coefficient 191
Spearman’s rank correlation coefficient 177-80,
183
spread see dispersion measures
stacked bar charts 34
standard deviation 62—8
agreement 185-6
confidence intervals 120, 123
standard error 112-16
statistical inference 77, 93-5
step charts 37-8, 41
stepwise selection 201-2
straight line models see linear regression
stratified random sampling 74
study design 71-90
blinding 86
case-control studies 80-3
case-series studies 76
clinical trials 84
cohort studies 78-80, 83
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study design (Continued)
confounders 81, 84
contingency tables 79-80, 82
cross-section studies 76—8
experimental studies 83-90
intention-to-treat 89
matching 81-2
outcome variables 72
populations 72-3
randomisation 83, 845, 88—9
randomised control trials 85, 86—90
sampling 72-5, 835, 88-9
types of study 75-81
study populations 73, 75, 93—4
sub-groups 25
sum of squares 63
summary values see numeric summary values
surveys 76—8
survival 227-38
censored data 228
comparison between groups 232-9
Cox’s regression model 236
hazard ratios 235-6
Kaplan-Meier curves 230-1, 233-5
Kaplan-Meier tables 228-30
log-log plots 238
log-rank test 233-5
median 231-2
null hypothesis 233—4
probability 228-31
proportional hazards 236-8
single groups 228
symmetric distribution 44, 46
systematic random sampling 74
systematic review 23945
extraction of data 240-1
forest plots 241-3, 250
funnel plots 244-6
homogeneity/heterogeneity 24650
identification of trials 240-1
inclusion criteria 240-1
L’Abbé plots 247
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Mantel-Haenszel test 248-50
meta-analysis 239, 240, 24650
methods 240-3

publication bias 244, 245
search strategy 241

t distribution 114, 120-6, 145-7, 151, 222
tables see frequency tables

target populations 73, 75, 93—4

test statistic 164

tests see hypothesis tests

time series charts 401

transformed data 66—8

treatment bias 86

treatment groups 84, 86

trend 1668

two-sample ¢ test 120-5, 145-6, 151, 222
type I/1I errors 150

uniform distributions 43

units 5, 7-9

univariate analysis 238

univariate logistic regression 222
unmatched case-control studies 81-2

variables

characteristics 9—-13

definition 3—4

selection 200-3

types 4-9

see also categorical; continuous; discrete;

metric; nominal; ordinal data

variation 190-1
visual analogue scale (VAS) 10, 59, 118

Wald statistic 220-1

weighted kappa 184

weighted mean 242-3, 249

Wilcoxon signed-rank test 117, 131, 145, 149,
151

z distribution 220
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